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Abstract

Kuramoto oscillators are widely used to explain collective phenomena in networks of coupled oscillatory

units. We show that simple networks of two populations with a generic coupling scheme can exhibit chaotic

dynamics as conjectured by Ott and Antonsen [Chaos, 18, 037113 (2008)]. These chaotic mean field dy-

namics arise universally across network size, from the continuum limit of infinitely many oscillators down

to very small networks with just two oscillators per population. Hence, complicated dynamics are expected

even in the simplest description of oscillator networks.

PACS numbers: 05.45.-a, 05.45.Gg, 05.45.Xt, 02.30.Yy
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The Kuramoto phase model [1] and its generalization by Sakaguchi [2] are widely used to un-

derstand synchronization and other collective phenomena in weakly coupled oscillator networks

in physics and biology [3]. Networks of globally coupled Kuramoto oscillators cannot exhibit

chaotic dynamics if the oscillators are identical due to degeneracy [4]. Moreover, phase chaos

for globally coupled nonidentical units vanishes in the continuum limit of infinitely many oscil-

lators [5]. Hence, a decade ago, Ott and Antonsen conjectured in their seminal paper [6] that

networks of two or more populations—where interactions are all-to-all but distinct between and

within populations—could exhibit chaotic mean-field dynamics, both in the continuum limit and

in finite networks. So far, however, only periodic and quasiperiodic motions of the mean field have

been observed for coupled populations of Kuramoto oscillators [7, 8].

In this paper we report chaotic mean field dynamics for two populations of N Kuramoto phase

oscillators. More specifically, we consider oscillator networks where the phase θσ,k ∈ T :=

R/2πZ of oscillator k ∈ {1, . . . , N} in population σ ∈ {1, 2} evolves according to

θ̇σ,k = ωσ,k +
2∑

τ=1

Kστ

N

N∑
j=1

sin(θτ,j − θσ,k − αστ ) ; (1)

the intrinsic frequencies ωσ,k are sampled from a Lorentzian distribution with half-width-at-half-

maximum ∆ [9] and Kστ and αστ are the coupling strength and phase-lag between populations σ

and τ . While (1) has been extensively studied for networks with identical phase-lags αστ =

α [2, 6, 7, 10], we find here that chaotic dynamics arise in the generic situation where both coupling

strength Kστ and phase-lags αστ are distinct [11]. Chaotic mean field dynamics appear in the

continuum limit N → ∞ as well as finite-dimensional networks (1), down to networks of just

N = 2 oscillators per population. First, our results provide a positive answer to Ott and Antonsen’s

conjectures for minimal networks of two populations. Second, neither heterogeneity, amplitude

variations, the influence of fast oscillations, nonautonomous forcing, nor higher-order interactions

are necessary to observe chaos. Hence, we anticipate that such chaotic phase dynamics arise in a

large number of real-world systems [12, 13].

Chaotic Mean Field Dynamics in the Continuum Limit.—Each oscillator of the network (1) is

driven by a common mean field which depends on the Kuramoto order parameter

Zσ = rσe
iφσ =

1

N

N∑
j=1

eiθσ,j (2)

of population σ; here i =
√
−1. The order parameter encodes the level of synchrony of the

population: |Zσ| = rσ = 1 if and only if population σ is fully phase synchronized. Write αs :=
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ασσ, ks := Kσσ for the self-coupling strength and phase-lag, and kn := K12 = K21, αn :=

α12 = α21 for the neighbor-coupling strength and phase-lag. By rescaling time appropriately we

set ks + kn = 1 and parametrize the deviation A = ks − kn of coupling strengths. This yields the

complex coupling parameters cs = cs(αs, A) := kse
−iαs , cn = cn(αn, A) := kne

−iαn . Now

Hσ = csZσ + cnZτ , (3)

with τ = 2 if σ = 1 and τ = 1 if σ = 2, drives the evolution of population σ since (1) can be

rewritten as

θ̇σ,k = ωσ,k + Im(Hσe
−iθσ,k). (4)

In the continuum limit, the system (4) is described by the evolution of the probability den-

sity fσ(θ, t) for an oscillator of population σ to be at θ ∈ T at time t. In the limit, the order

parameter (2) of population σ is Zσ(t) = rσ(t)eiφσ(t) =
∫ 2π

0
eiθfσ(θ, t)dθ. Let w̄ denote the

complex conjugate of w ∈ C. Ott and Antonsen [6] showed that there is an invariant manifold

of fσ(θ, t) on which the dynamics are determined by

Żσ = −∆Zσ +
1

2
Hσ −

1

2
H̄σZ

2
σ. (5)

Since these equations are symmetric by shifting phases by a constant angle, we introduce the phase

difference ψ = φ1 − φ2 to obtain the three-dimensional system

ṙ1 = −∆r1 +
1− r2

1

2
(r1 Re(cs) + r2 Re(c̄ne

−iψ), (6a)

ṙ2 = −∆r2 +
1− r2

2

2
(r2 Re(cs) + r1 Re(c̄ne

iψ), (6b)

ψ̇ =
1 + r2

1

2r1

(
r1 Im(c̄s) + r2 Im(c̄ne

−iψ)
)
− 1 + r2

2

2r2

(
r2 Im(cs) + r1 Im(c̄ne

iψ)
)
. (6c)

with 0 < r1, r2 ≤ 1, ψ ∈ [0, 2π). The equilibrium SS0 = (1, 1, 0) corresponds to full (phase)

synchrony, SSπ = (1, 1, π) to a two cluster solution where the clusters are in anti-phase, and

I = (0, 0, ∗) denotes completely incoherent configurations with Z1 = Z2 = 0. Moreover, there is

a time-reversal symmetry for (αs, αn) = (π
2
, 0); cf. [11] for details.

Chaotic attractors arise in the mean field dynamics (6) of the continuum limit; here we fix

A = 0.7 but there is a range of A for which there are chaotic dynamics; Fig. 1. Consider identical

oscillators, ∆ = 0. The bifurcation diagram in Fig. 1(a) shows that the attractors arise through a

period-doubling cascade. They are subsequently destroyed as they approach the invariant surfaces
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(b) (c) (d)

(a) (b) (c) (d)Fig. 3

Figure 1. Chaotic attractors arise for the mean field dynamics (6) forA = 0.7 and fixed αn = 0.44. Panel (a)

shows the local maxima and minima of rσ = |Zσ|; chaos arises through a period doubling cascade and the

chaotic attractor is destroyed as it approaches the invariant surface rσ = 1 (dashed) and rσ = 0 (dashed).

In the inset A is varied as αs = 1.654 is fixed. Initial conditions were continued quasi-adiabatically as

parameters are varied. Panels (b–d) show trajectories (black curves) for the parameter values highlighted

in (a) by black vertical lines in the projection (γ, δ) = (Z1Z̄2, |Z1|2 − |Z2|2): (b) after the second period

doubling, αs = 1.652, (c) after the fist transition to chaos, αs = 1.653, and (d) just before the crisis,

αs = 1.6584. Invariant surfaces for r1 = 1 (blue) and r2 = 1 (red) intersect in the unit circle (gray). Points

on the attractor in close proximity to the invariant surfaces are highlighted in the color of each surface.

rσ = 1 where one of the populations is phase synchronized. The system symmetry (r1, r2, ψ) 7→
(r2, r1,−ψ) implies the existence of two attractors which are related by symmetry. Hence, there

is multistability of the fully synchronized equilibrium SS0 and two chaotic attractors. Note that

the phase difference of the mean fields ψ is bounded (see Fig. 1(b–d)), that is, the centroids of the

order parameters Zσ do not rotate relative to one another.

To quantify the chaotic dynamics we calculate the maximal Lyapunov exponents λmax for the

mean field equations (6). Fig. 2 shows a region in (αs, αn)-parameter space where the maximal
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Figure 2. The mean field equations (6) show positive Lyapunov exponents (coloring) in a region of

(αs, αn)-parameter space for A = 0.7. The system was integrated numerically from the fixed initial con-

dition (r1(0), r2(0), ψ(0)) = (0.8601, 0.4581, 1.1815). Panel (a) shows the maximal Lyapunov exponents

overlaid with two-parameter bifurcation lines: the transcritical (TC), Hopf, and first period-doubling (PD1)

lines emanate from (αs, αn) = (π2 , 0) and end in the degenerate bifurcation (Deg) where SS0 and SSπ

swap stability [11]. Panel (b) shows a magnification of the region where positive Lyapunov exponents arise

(red color); a dotted line indicates the parameter range shown in Fig. 1. Chaotic regions are bounded by

“lobes” of second period-doubling PD2 lines. Panel (c) shows that positive Lyapunov exponents persist for

nonidentical oscillators with a nontrivial distribution of intrinsic frequencies ∆ > 0.

Lyapunov exponents are positive. Numerical continuation of the bifurcations shown in Fig. 1 in the

parameter plane using AUTO [14] shows that the chaotic region is organized into multiple “lobes”

which are bounded by period-doubling curves (PD2 in Fig. 2). Moreover, multiple bifurcation

lines—including period doubling and a homoclinic bifurcation—end in the point (αs, αn) = (π
2
, 0)

where the system has a time-reversal symmetry. Hence, these parameter values appear to organize

the bifurcations.

Note that the chaotic region persists in the continuum limit for non-identical oscillators, ∆ > 0;

cf. Fig. 2(c).

Chaotic Dynamics for Finite Networks.—The dynamics of finite networks (1) of N > 3 iden-

tical oscillators, ωσ,k = ω, can be described exactly in terms of collective variables [4, 15, 16].

(We assume ω = 0 without loss of generality.) Then the phase space T2N of (1) is foliated by six-
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dimensional leafs, each of which is determined by constants of motion ψ(σ)
k , k = 1, . . . , N (N − 3

are independent). The dynamics of population σ = 1, 2 on each leaf are given by the evolution of

its bunch amplitude ρσ, bunch phase Φσ, and phase distribution variable Ψσ. Write zσ = ρσe
iΦσ .

The bunch variables relate to the order parameter (2) through Zσ = zσγσ where

γσ =
1

Nρσ

N∑
j=1

ρσe
iΨj + eiψ

(σ)
j

eiΨσ + ρσe
iψ

(σ)
j

.

Now (3) evaluates to Hσ = cszσγσ + cnzτγτ and the oscillator bunch evolves according to

ρ̇σ =
1− ρ2

σ

2
Re(Hσe

−iΦσ), (7a)

Φ̇σ =
1 + ρ2

σ

2ρσ
Im(Hσe

−iΦσ), (7b)

Ψ̇σ =
1− ρ2

σ

2ρσ
Im(Hσe

−iΦσ). (7c)

(The dynamics of individual oscillators (1) is determined by (7) through (4) and (3).) Note that

γσ → 1 (and thus zσ → Zσ) as N →∞ if the constants of motion are uniformly distributed on the

circle, ψ(σ)
k = 2πk/N , as shown in [16]; in this case we recover (5) as (7c) decouples from (7a)

and (7b).

Chaotic dynamics arise in networks of finitely many identical Kuramoto oscillators (1) for a

wide range of system sizes. We fix phase-lags αs, αn while varying N and take the constants

of motion be uniformly distributed on the circle, ψ(σ)
k = 2πk/N . The dynamics are now given

by (7); effectively, these are the mean field dynamics of the continuum limit (6) modulated by

finite-size fluctuations through γσ (which depend on Ψσ and vanish as N → ∞). Fig. 3(a,b)

show chaotic dynamics similar to those of the continuum limit (cf. Fig. 1) for N = 20 oscillators

per population. Numerical calculation of maximal Lyapunov exponent for varying system size,

shown in Fig. 3(c), indicate that there are not only chaotic dynamics for any network of N ≥ 20

oscillators per population, but also for small networks.

The chaotic dynamics persist as the initial conditions are varied in the full system (1). Keeping

the constants of motion fixed will keep us on the same leaf of the foliation. But a generic pertur-

bation of an initial conditions in the full system (1) will be on a different leaf of the foliation. To

explore the dynamics for nearby leafs—and thus nearby initial conditions in (1)—we parametrize

the constants of motion by s ≥ 0 by setting ψ(σ)
k = 2sπk/N . Note that for s = 1 we have a uni-

form distribution as above. Fig. 3(d–f) show the dynamics for varying parameter s for a network
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Figure 3. Finite Kuramoto oscillator networks (7) show robust chaos as the system size N and constants of

motion, parametrized by s, are varied; here A = 0.7, αn = 0.44, αs = 1.654 (see Fig. 1). Panel (a) shows a

trajectory of (7) for N = 20, s = 1 in the projection (γ, δ) = (z1z̄2, |z1|2− |z2|2). Panel (b) illustrates how

the trajectory in (a) (solid, ρ1 = |z1| red, ρ2 = |z2| blue) diverges from the dynamics of |Zσ| (dashed) in the

continuum limit (6). Minima/maxima of fast finite size oscillations are highlighted (light blue/red circles).

The observed chaotic dynamics is robust in s and N : Panel (c) shows local minima/maxima in |z1| and |z2|

(circles in Panel (a)) and maximal Lyapunov exponent λmax (asterisks) for varying network size N (s = 1

fixed). Panels (d–f) show chaotic dynamics for N = 20 as the constants of motion are varied with s.

of N = 20 oscillators per population. This suggests that even in small networks chaotic dynamics

arise for many initial conditions.

There is further evidence that the mechanism that generates the chaotic dynamics is universal

across system sizes, even where the mean field reductions cease to apply. For nearby parameter
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Figure 4. Attracting chaos arises in oscillator networks (1) of two populations of N = 2 oscillators for

parameters A = 0.7, αs = 1.639, and αn = 0.44. Panel (a) shows the evolution of the order parameter

over time. Panel (b) shows the phase evolution in a two-dimensional projection and a symmetric image.

values we find persistent chaos for two populations of N = 2 oscillators each; cf. Fig. 4. This is

the smallest network of two populations in which chaos can occur since the phase-space is effec-

tively three-dimensional. These solutions are chaotic weak chimeras [17–19]. Hence our results

also show that chaotic weak chimeras can occur even in the simplest system through symmetry

breaking. A full analysis of this small system is beyond the scope of this manuscript and will be

published elsewhere.

Discussion.—Chaotic dynamics can—as conjectured by Ott and Antonsen [6]—indeed arise

in two populations networks of coupled Kuramoto phase oscillators. Remarkably, these chaotic

dynamics appear not only in the continuum limit and in large populations, but for roughly the

same parameter values also in the smallest possible networks. While chaos has been observed in

spatially extended (infinite-dimensional) mean field equations [20], the setup of two populations

is the smallest system possible in which chaos can arise in the mean field for Kuramoto oscillators.

Moreover, the chaotic dynamics here are distinct from chaos in systems where interaction depends

explicitly on the oscillators’ phases (rather than the phase differences) [15, 21] since they have

additional degrees of freedom. As in [22], chaos appears to relate to parameter values where the

system has a time-reversal symmetry [23]. Hence this raises the questions whether the symme-

try induces suitable homoclinic or heteroclinic structures whose breaking yields attracting chaos

across system sizes.

Our results show that—in contrast to phase chaos [5]—there is chaos in the continuum limit

for identical and almost identical oscillators as given by the Ott–Antonsen reduction (5). At the

same time, we showed chaotic dynamics are also present in finite networks of identical oscillators
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whose dynamics are given by the Watanabe–Strogatz equations (7). Neither of these approaches

yields a suitable description of the finite-size networks of nonidentical oscillators; cf. also [24].

Is there chaos for finite networks of non-identical oscillators (∆ > 0)? And if so, what are its

properties, for example, the dimension of the attractor? Recently, perturbation theory has proved

useful to describe the evolution of trajectories for near-integrable systems [25], but new techniques

are called for to describe the collective dynamics of nonidentical oscillator networks with respect

to both the integrable case and the continuum limit.

In summary, oscillator networks (1) with simple sinusoidal interactions have surprisingly rich

dynamics. For two populations of oscillators, higher-order effects such as amplitude variations

or the influence of the fast oscillations, are not required to observe chaotic dynamics. Hence, we

anticipate chaotic fluctuations to arise in small experimental oscillator setups [12, 13]. Moreover,

we expect much richer dynamics for three or more populations of phase oscillators [26]. Such

multi-community oscillator networks have been instructive to understand the dynamics of neural

synchrony patterns [27, 28], where distributed phase-lags are of particular importance due to the

finite speed of signal propagation. Distributed phase-lags give rise to chaotic dynamics and we

therefore anticipate that our results further illuminate the dynamics of large-scale (neural) oscilla-

tor networks.
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