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The simplest network of coupled phase-oscillators exhibiting chimera states is given by two popu-

lations with disparate intra- and inter-population coupling strengths. We explore the effects of het-

erogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally

in various settings, for example, as an approximation to transmission delays, excitatory-inhibitory

interactions, or as amplitude and phase responses of oscillators with electrical or mechanical cou-

pling. We find that breaking the phase-lag symmetry results in a variety of states with uniform and

non-uniform synchronization, including in-phase and anti-phase synchrony, full incoherence (splay

state), chimera states with phase separation of 0 or p between populations, and states where both

populations remain desynchronized. These desynchronized states exhibit stable, oscillatory, and

even chaotic dynamics. Moreover, we identify the bifurcations through which chimeras emerge.

Stable chimera states and desynchronized solutions, which do not arise for homogeneous phase-lag

parameters, emerge as a result of competition between synchronized in-phase, anti-phase equilibria,

and fully incoherent states when the phase-lags are near 6 p
2

(cosine coupling). These findings elu-

cidate previous experimental results involving a network of mechanical oscillators and provide fur-

ther insight into the breakdown of synchrony in biological systems. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4958930]

The synchronization of oscillators is a ubiquitous phenom-

enon that manifests itself in a wide range of biological and

technological settings, including the beating of the heart,37

flashing fireflies,11 pedestrians on a bridge locking their

gait,58 circadian clocks in the brain,26 superconducting

Josephson junctions,67 chemical oscillations,19,62 metabolic

oscillations in yeast cells,13,15 and life cycles of phytoplank-

ton.36 Recent studies have reported the emergence of solu-

tions where oscillators break into localized synchronized

and desynchronized populations, commonly known as chi-

mera states.
21,47

These solutions have been studied in the

Kuramoto–Sakaguchi model with homogeneous coupling

phase-lag.1,32,38,49 Significant progress has been made un-

derstanding how chimera states emerge with respect to

different topologies,2,29,46,48 their robustness towards het-

erogeneity,22,25 how they manifest in real-world experi-

ments such as (electro-) chemical and mechanical

oscillator systems33,63,66 and laser systems,17 and recently

in explaining their basins of attraction32 and controllabili-

ty.
9,32

Here, we generalize one of the simplest systems in

which chimera states are known to occur, two populations

of identical phase-oscillators with heterogeneous intra-

and inter-population coupling, to account for effects of

breaking the symmetry in the phase-lag parameters. Using

symmetry considerations, numerical methods, and pertur-

bative approaches, we explore and explain the emergence

of dynamics which only occur for heterogeneous phase

lags, including new types of chimera states and

desynchronized attractors with stable, periodic, or chaotic

motion. We find that equilibria with non-uniform synchro-

ny such as chimeras are stable near four points in parame-

ter space where time-reversing symmetries exist and

where fully synchronized in-phase and anti-phase states

and fully incoherent states exchange stability. These find-

ings corroborate the notion that chimera states emerge as

a competition between different types of uniform

synchronization.
33

I. INTRODUCTION

Over a decade ago, the observation of solutions character-

ized by localized synchrony and incoherence,21 which subse-

quently became known as chimera states,2 sparked an

enormous amount of interest in coupled oscillatory systems.

For identical oscillators, such dynamics exhibit symmetry

breaking: the solution has less symmetry than the system it-

self.7 At the same time, chimera states are robust against heter-

ogeneities, including additive noise, non-identical oscillator

frequencies,22 various coupling topologies,29,35,46,48,56 and non-

complete network topologies.25 They have since been observed

in real-world systems such as experimental systems ranging

from metronomes33 to (electro-)chemical oscillators and lasing

systems.17,53,63,66 Moreover, by applying control, they may be

relevant for functional applications in neurobiology.9,32,42 For a

detailed review on chimera states, see Ref. 47.a)Electronic mail: erik.martens@ds.mpg.de. URL: http://eam.webhop.net
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One of the simplest models in which chimera states arise

consists of two interacting populations composed of N
Kuramoto–Sakaguchi phase oscillators, where the phase

hr
k 2 T ¼ R=2pZ of the k-th oscillator in population r¼ 1,

2 evolves according to

_h
r
k :¼ dhr

k

dt
¼ xþ

X2

s¼1

Krs

N

XN

l¼1

sin hs
l � hr

k � ars
� �

; (1)

with intrinsic frequency x, inter- and intra-population cou-

pling strengths Krs, and phase-lag parameters ars, which

tune between the regimes of pure sine-coupling (ars¼ 0) and

pure cosine-coupling (ars ¼ p
2
). Assuming that the popula-

tions are symmetrically coupled,1,30,31,38 we define the self-
and neighbor-coupling parameters as ¼ a11 ¼ a22; an ¼ a12

¼ a21, and ks ¼ K11 ¼ K22; kn ¼ K12 ¼ K21. If ks 6¼ kn are

distinct, the system (1) is non-locally coupled, an intermedi-

ate case between local (nearest-neighbor) and global (identi-

cal all-to-all) coupling. While global coupling (i.e., uniform

coupling strength) can lead to chimeras in more general os-

cillator models,24,52,54 fully symmetric coupling (Krs¼K,

ars¼ a) of Kuramoto–Sakaguchi phase oscillators prevents

oscillators from drifting relative to each other, a feature in-

herent to chimera states.4,5,8 Significant progress has been

made in characterizing chimera states and their bifurcations

in non-locally coupled populations modeled by Eq. (1), 1,38

in particular, with respect to their robustness towards hetero-

geneity in frequencies22,23 and network structure,25 and their

basins of attraction.32 These analyses even extend to three

populations,30,31 but all are limited to networks with homo-

geneous phase-lags ars¼ a.

Asymmetry of the phase-lag parameters ars is highly rel-

evant for real-world applications:27 they correspond to energy

loss along transmission lines in power grids14,39 and yield an

approximation for periodic solutions in systems with distribut-

ed delays such as neuronal networks57 and mobile phone net-

works.20,64 For coupled populations of coupled phase

oscillators (1) both the coupling strengths and phase-lags af-

fect the interaction between oscillators. Mathematically speak-

ing, since Krs sinðhs
l � hr

k � arsÞ ¼ ImðKrse
�iarseiðhs

l�hr
k ÞÞ,

one can combine coupling strength and phase-lag into a single

complex parameter coupling crs ¼ Krse
�iars . This yields a

natural generalization of coupled populations of coupled

phase oscillators (1) considered previously.1,31–33,38,51 In the

physical context of linear coupling, as is typical of networks

with mechanical or electronic coupling,33 one may regard this

complex constant as a response function, i.e., Krs and ars cor-

respond to the amplitude- and phase-response of oscillators

being forced by oscillators in its own or its neighboring popu-

lation. We find that coupled populations with heterogeneous

Krs and ars exhibit rich dynamics, including a variety of sta-

ble uniformly synchronized, locally synchronized, as well as

desynchronized states that are quite distinct from the dynam-

ics observed for non-local coupling with identical phase-lags.

II. MEAN FIELD DESCRIPTION IN THE
THERMODYNAMIC LIMIT

We consider the thermodynamic limit N ! 1, which

allows to express the ensemble dynamics in terms of the

continuous oscillator density f r(h, x). This facilitates a low-

dimensional description of the dynamics via the

Ott–Antonsen (OA) ansatz43,44 in terms of the mean-field or-

der parameter of each population

zrðtÞ ¼ rrðtÞe�i/rðtÞ ¼
ð

eihf rðh; tÞdh

with 0< rr� 1. Let cs;n ¼ ks;ne�ias;n denotes the complex val-

ued coupling parameters. As outlined in Appendix A, the

mean-field dynamics given by

@�z1

@t
¼ 1

2
csz1 þ cnz2ð Þ �

1

2
csz1 þ cnz2ð Þ�z2

1; (2a)

@�z2

@t
¼ 1

2
csz2 þ cnz1ð Þ �

1

2
csz2 þ cnz1ð Þ�z2

2; (2b)

describe the dynamics on an invariant manifold, the OA

manifold, in which the Fourier coefficients fn(t) of the proba-

bility density f satisfy fnðtÞ ¼ aðtÞn for some complex func-

tion a(t). This manifold is globally attracting for a frequency

distribution with non-zero width D.44,45 Studies have shown

that the dynamics on the OA manifold for n¼ 2 populations

and sufficiently small D are qualitatively the same compared

with the dynamics obtained for D¼ 0.22,23 Thus, we discuss

the dynamics in the limit of D ! 0 using the Ott–Antonsen

reduction.

We may rewrite these equations in polar coordinates,

z1 ¼ r1e�i/1 and z2 ¼ r2e�i/2 . Reducing the phase shift sym-

metry by introducing the phase difference w ¼ /1 � /2

yields the three-dimensional system

_r1 ¼
1� r2

1

2
ksr1 cos as þ knr2 cos an � wð Þ½ �; (3a)

_r2 ¼
1� r2

2

2
ksr2 cos as þ knr1 cos an þ wð Þ½ �; (3b)

_w ¼ 1þ r2
1

2r1

ksr1 sin as þ knr2 sin an � wð Þ½ �

� 1þ r2
2

2r2

ksr2 sin as þ knr1 sin an þ wð Þ½ �; (3c)

restricted to the cylinder

C ¼ f ðr1; r2;wÞ j 0 < r1; r2 � 1;�p < w � pg:

Both complex (2) and real representation (3) prove useful for

the ensuing analysis. The dynamics in Eq. (2) is conveniently

displayed using the transformed variables c ¼ z1�z2 2 C; d
¼ jz1j2 � jz2j2 2 R, whereas (3) may be represented in cy-

lindrical coordinates (see Fig. 5 and Ref. 32 for examples).

When convenient, we will rescale time and combine the

coupling strength parameters ks, kn into a single parameter

A¼ ks � kn, the disparity of the coupling strength between

the two populations, and normalize the total coupling

strength such that ksþ kn¼ 1. Note that this parametrization

does not exclude the possibility of negative coupling,

094819-2 Martens, Bick, and Panaggio Chaos 26, 094819 (2016)
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(corresponding to time-reversal for identical frequencies)

since negative coupling is equivalent to the shift of phase-lag

parameters ðan; asÞ7!ðan þ p; as þ pÞ, as we explain in the

following.

III. ANALYSIS

A. Symmetries and invariant subspaces

Symmetries imply the existence of dynamically invari-

ant subspaces that organize the dynamics. Moreover, param-

eter symmetries allow to restrict the overall parameter space.

The results of this section are summarized in Fig. 1(a). In the

following, we will write ks, kn rather than A for ease of nota-

tion and assume the parameters to be fixed.

1. Synchronized populations as invariant subspaces

The faces of the cylinder C defined by

S1 ¼ f ðr1; r2;wÞ 2 C j r1 ¼ 1g;

S2 ¼ f ðr1; r2;wÞ 2 C j r2 ¼ 1g;

are dynamically invariant.32 Its union S1 [ S2 corresponds

to the points where at least one population is synchronized.

The dynamics on S2 (and similarly on S1) are given for

r¼ r1 by

_r ¼ 1� r2

2
ksr cos as þ kn cos an � wð Þ½ �; (4a)

_w ¼ 1þ r2

2r
ksr sin as þ kn sin an � wð Þ½ �

�ks sin as � knr sin an þ wð Þ: (4b)

Moreover, their intersection SS :¼ S1 \ S2 is dynamically

invariant and the dynamics of w are given by

_w ¼ kn½sinðan � wÞ � sinðan þ wÞ� (5)

and are independent of as.

2. Symmetries of the system

Recall that we have a symmetry of a dynamical system

if there is a group whose action commutes with the vector

field.16 Sets of points that remain fixed under the action of a

subgroup of the symmetry group are dynamically invariant.

First note that (1) has a continuous symmetry that acts

by shifting all phases by a constant amount. Moreover, we

have a permutational symmetry since oscillators within one

population can be permuted as well as one can permute the

populations (these two actions do not necessarily commute).

As a consequence, the Ott–Antonsen equations (2) still have

a phase shift symmetry as well as a symmetry that permutes

the indices of the two populations. In polar coordinates with

phase differences (3c) the phase shift symmetry is reduced

and only the permutational symmetry that acts by

R21 : ðr1; r2;wÞ7!ðr2; r1;�wÞ (6)

remains. The dynamically invariant fixed point subspace is

given by

R :¼ FixðR21Þ ¼ f ðr1; r2;wÞ j r1 ¼ r2;w 2 f0; pgg; (7)

which are the dynamically invariant rays described previous-

ly.32 OnR the dynamics for r1¼ r2¼ r are given by

_r ¼ 1� r2

2
r ks cos as þ kn cos an � wð Þð Þ; (8)

where w 2 f0; pg. It is apparent from (3) that the set R is

contained in the invariant cone fðr; r;wÞg � C for an 2
f0; pg and arbitrary as and A. This cone divides C into two

dynamically invariant connected regions. On this cone, dy-

namics have been studied explicitly.34,50

FIG. 1. Symmetries, bifurcations, and equilibria in (as, an)-parameter space. (a) Symmetries. The diagonal indicates the parameter space for identical phase-lag

parameters. Due to the parameter symmetries Rs, Rn, Rq it suffices to consider the hatched parameter range. The map R0 is a time-reversing symmetry at triangles

(�), and the map Rp is a time-reversing symmetry at the circles (�) but a regular symmetry of the system at squares (�). (b) and (c) Bifurcation diagrams for

A ¼ ks � kn ¼ 0:5. Regions of stability are shaded in different colors: SS0 (red), SSp (blue), I (gray), chimera DSSN� (green), and breathing chimera DSLC (dark

green). Stability boundaries between the uniform states (SS0, SSp, I) are dotted lines; transitions between non-uniform states (see right panel for close-up) are de-

lineated by a saddle-node bifurcation (SN, solid), Hopf bifurcation (HB1, dashed), homoclinic bifurcation (HC, dashed-dotted), and a transcritical bifurcation (TC,

circles). Note that the stable regions for the chimera states DSSN� and DSLC overlap with the stable regions for either SS0 or SSp and are located near the points

ð6 p
2
;6 p

2
Þ where time-reversing symmetry R0 exists. Desynchronized DD states with 0< r1, r2< 0 emerge in the transcritical bifurcation, TC.
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Combining this observation with the invariant subspaces

in Sec. III A yields the existence of two equilibria, SS0¼ (1,

1, 0) and SSp¼ (1, 1, p). These points are stationary since

fSS0; SSpg ¼ R \ SS;

independent of the parameters as, an, ks, kn. Note that for an 62
6 p

2

� �
they are the only equilibria on SS since they are the

only fixed points of (5).

3. Parameter and time-reversal symmetries

The system has parameter symmetries given by

Rn : ðas; an;w; tÞ 7! ðas; an þ p;wþ p; tÞ; (9)

Rs : ðas; an;w; tÞ 7! ðas þ p; an;wþ p;�tÞ; (10)

where Rs also inverts time. As a consequence, we have a

“diagonal” parameter symmetry

Rsn : ðas; an;w; tÞ7!ðas þ p; an þ p;w;�tÞ (11)

in (as, an)-parameter space that keeps all points of C fixed

and inverts time. Moreover, there is a parameter symmetry

R. : ðas; an;w; tÞ7!ðp� as; p� an;�w;�tÞ; (12)

which corresponds to inversion in the point ðas; anÞ ¼ p
2
; p

2

� �
.

To understand the dynamics on C it is thus sufficient to con-

sider the set as; an 2 ½0; pÞ; as � an—the hatched region in

Fig. 1(a).

The parameter symmetries indicate that there are param-

eter values for which the system (3) has time reversal sym-

metries. Since R. keeps the parameter values ðas; anÞ
¼ p

2
; p

2

� �
invariant, it reduces to a time-reversal symmetry

R0 : ðr1; r2;wÞ7!ðr1; r2;�wÞ

for these parameter values. Applying Rn, Rs, we have that R0

is a time-reversal symmetry for ðas; anÞ 2 ð6 p
2
;6 p

2

� �
g (tri-

angles in Fig. 1(a)). This corresponds to the time-reversal

symmetry in (1) for pure cosine coupling when the interac-

tion between oscillators is given by an even function.3 Points

with w 2 f0; pg are fixed under the action of R0.

For parameter values which are mapped by Rq and

either Rs or Rn to the same point there are additional symme-

tries or time-reversing symmetries. For ðas; anÞ ¼ p
2
; 0Þ

�
we

have R.
p
2
; 0Þ ¼ Rn

p
2
; 0Þ

��
. This implies that we have a time-

reversal symmetry

Rp : ðr1; r2;wÞ7!ðr1; r2; p� wÞ

for ðas; anÞ 2 ð6 p
2
; 0Þ; ð6 p

2
; pÞ

� �
(circles in Fig. 1(a)) that

leaves points with w 2 6 p
2

� �
invariant. Furthermore, the

point ðas; anÞ ¼ ð0; p2Þ is mapped by Rq to its image under Rs,

that is, R.ð0; p2Þ ¼ Rsð0; p2Þ. Since Rs also reverses time, this

implies that Rp is a (regular) symmetry for ðas; anÞ 2
ð0;6 p

2

� �
; ðp;6 p

2
Þg (squares in Fig. 1(a)). The invariant set

ðr1; r2;wÞ jw ¼ 6 p
2

� �
� C divides phase space into two in-

variant regions.

B. Full synchrony SS0, antiphase synchrony SSp, and
incoherence I

Independent of phase-lag and coupling strength, there

are two equilibria where both populations are fully synchro-

nized: in-phase synchronization SS0¼ (1, 1, 0) and anti-

phase synchronization SSp¼ (1, 1, p). As mentioned above,

they are the only equilibria on SS if an 6¼ 6 p
2
.

Similarly, we denote by I the equilibrium solution with

r1¼ 0 and r2¼ 0 which corresponds to a completely incoher-

ent distribution of oscillator phases38 in terms of the order pa-

rameter. Note that in the finite dimensional system (1) the

condition r1¼ 0 defines a manifold3 that contains for example,

splay states59,61 where the oscillators are evenly distributed or

any other configuration that yields zero order parameter.

1. Stability of SS0 and SSp

The eigenvalues of the linearization of (3) at SS0 and

SSp are

kSS0

1 ¼ kSS0

2 ¼ �ks cos as � kn cos an; (13)

kSS0

3 ¼ �2kn cos an; (14)

and

kSSp
1 ¼ kSSp

2 ¼ �ks cos as þ kn cos an; (15)

kSSp
3 ¼ 2kn cos an; (16)

respectively. The eigenvalues k1¼ k2 are degenerate, and it

suffices to consider s¼ k1þ k3 and D¼ k1k3 to discuss sta-

bility. The eigenvalues are real, and thus, we can either have

saddles (D< 0), unstable (D> 0, s> 0), or stable nodes

(D> 0, s< 0). Regions of stability are shown in Figure 2.

Stability boundaries are located at

kn ¼ 0; janj ¼
p
2
; and kn ¼ 7ks

cos as

cos an
; (17)

for SS0 and SSp, respectively.

Since kSS0

3 ¼ �kSSp
3 , an exchange of stability occurs

when k3¼ 0, i.e., when kn¼ 0 or an ¼ 6 p
2
. This implies that

(i) SS0 and SSp always have converse stability properties for

any given parameter values (unless kn¼ 0 or an¼ 0), and in

particular, are never stable simultaneously and (ii) provided

that the states already are stable on condition of k1< 0, SS0

and SSp swap stability at k3¼ 0.

2. Stability of I

Since the polar coordinates have a parameter singularity

leaving w undefined, consider complex Eq. (2) to determine

linear stability of I. Separating into real and imaginary parts,

we obtain the eigenvalues

kI
1;2 ¼ ks cos as þ kn cos an6ijkn sin an þ ks sin asj; (18)

kI
3;4 ¼ ks cos as � kn cos an6ijkn sin an � ks sin asj (19)
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of the Jacobian evaluated at I. The real parts Re(k) of all

four eigenvalues must be negative for this equilibrium solu-

tion to be stable. Thus we obtain the stability condition

ks cos as < �jkn cos anj:

Note that ReðkI
1;2Þ ¼ �kSS0

1;2 and ReðkI
3;4Þ ¼ �kSSp

1;2 . It there-

fore follows that if either SS0 or SSp is stable, then I must be

unstable and vice-versa. As a consequence, in combination

with the conclusions drawn previously for the fully synchro-

nized states, we have demonstrated that SS0, SSp, and I parti-

tion parameter space into mutually exclusively stable

regions. These regions of stability are shown in Fig. 2(c).

3. Global bifurcations and continua of equilibria

The sinusoidal coupling of the system forces a degenerate

bifurcation behavior that leads to mutually exclusive regions of

stability. More precisely, the equilibria SS0, SSp, and I are con-

nected by a network of invariant subspaces defined by SS [ R
which forces eigenvalues to always switch in pairs; see Fig. 2(a).

For example, if an ¼ 6 p
2

then kSS0

3 ¼ kSSp
3 ¼ 0 independently

of A. This implies that SS0 and SSp swap stability in a degenerate

global bifurcation with the set SS being a continuum of equilib-

ria as the right hand side of (5) vanishes (Fig. 2). Similarly, if

kSS0

1 ¼ 0 or kSSp
1 ¼ 0, the right hand side of (8) vanishes for ei-

ther w¼ 0 or w¼p (respectively) which implies that a subset of

FIG. 2. Stability of equilibria SS0, SSp, I. (a) Invariant subspaces organize the stability of the equilibria in cylinder C (top). Network of invariant subspaces

forces stability to change in global bifurcations (bottom). (b) Cross-sections at A ¼ ks � kn ¼ 0:1 divide parameter space into regions of different types of sta-

bility (dark, medium, and bright shading denote regions with stable nodes, saddles, and unstable nodes, respectively). (c) Stable regions for the fully synchro-

nized states SS0 (red) and SSp (blue) and the fully incoherent state I (gray) are shown separately. Dashed lines correspond to the existence of additional

continua of equilibria for the time reversing symmetry R0. (d) The stable uniformly synchronized states, SS0, SSp, and I, partition parameter space into mutual-

ly exclusive regions. Note that pairs of as ¼ 6 p
2
; an ¼ 6 p

2
and A¼61 are loci in parameter space where all stability regions join together: varying A, we al-

ways observe that the three regions join in as ¼ 6 p
2
; an ¼ 6 p

2
.
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R is a continuum of equilibria. Again, this yields a degenerate

bifurcation if SS0 or SSp and I swap stability through a continu-

um of equilibria. Calculating the transverse eigenvalues to the

continuum of equilibria at the bifurcation (not shown) yields ad-

ditional information on the dynamics close to R for nearby pa-

rameter values.32

Note that for parameters with time-reversal symmetries

there are additional continua of equilibria in C that lie in the

sets that remain fixed under the action of the time-reversal

symmetries. More precisely, if as ¼ 6 p
2

and

an � w ¼ an þ w ¼ p
2

mod p; (20)

we have _r1 ¼ _r2 ¼ 0. Thus, finding equilibria of (3) reduces

to the algebraic condition _w ¼ 0 as given in (3c). If an ¼ 6 p
2

then (20) is fulfilled if w 2 f0; pg. For as ¼ an ¼ p
2

and

w¼ 0 the condition _w ¼ 0 is equivalent to

ksðr2r3
1 � r1r3

2Þ þ knðr2
2 � r2

1Þ ¼ 0

and its solutions are depicted in Fig. 3(a). Solutions come in

pairs, that is, if (r1, r2) is a solution so is (r2, r1), and all

points in R are solutions; cf. Equation (8). Similarly, if an 2
f0; pg then (20) implies w 2 6 p

2

� �
. For as ¼ p

2
; an ¼ 0, and

w ¼ p
2

the condition _w ¼ 0 is equivalent to

ksðr2r3
1 � r1r3

2Þ � knð2r2
1r2

2 þ r2
2 þ r2

1Þ ¼ 0

and its solutions are depicted in Fig. 3(b). In either case,

depending on the choice of ks, kn (or A) the continua of equi-

libria may intersect the boundary of C to give rise to chimera

states with a neutrally stable direction.

C. Chimera states DS and SD

Chimeras correspond to steady state solutions of Eq. (3)

on invariant surfaces S1 or S2, where either the first popula-

tion is synchronized (r1¼ 1) and the second population is

partially desynchronized (0� r2< 1) or vice versa. We refer

to these chimeras as DS or SD with subscripts to differentiate

between distinct equilibria. For a given set of parameter val-

ues (A, as, and an) we find up to four branches of chimeras,

three that appear to be always unstable and one that is stable

in a wedge shaped region of parameter space (see Fig. 1).

These extend the stable chimeras discussed in Ref. 1 for

identical phase-lag parameters which undergo various further

bifurcations for nonidentical phase lags as discussed below.

1. Chimeras near SS0

For parameter values close to as ¼ an ¼ p
2
, a saddle node

bifurcation gives rise to two branches of equilibria on S2, a

branch DSSN� of equilibria that are stable close to the saddle

node bifurcation and a branch DSSNþ that is unstable close to

the bifurcation. Note that these branches can change stability

away from the bifurcation point as they may undergo addi-

tional bifurcations; cf. text further below and Sec. III D. By

symmetry, analogous branches arise in S1. Using perturba-

tion theory we can approximate these states for small A.

DSSN� and DSSNþ are described by

as ¼
p
2
� Aa1;

an ¼
p
2
� A a1 þ D1ð Þ;

r1 ¼ 1þ A �17Sð Þ þ O A2ð Þ;
r2 ¼ 1;

w ¼ �A 2a1 þ D1ð Þ þ O A2ð Þ;
where

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2D2

1 � 6D1a1 � 4a2
1

q
and D1 and a1 are free parameters that can be independently

used to set the phase-lag difference as � an and deviation

from p
2
, respectively. Thus, when A is small, chimeras are lo-

cated (approximately) along a plane in parameter space pa-

rametrized by D1 and a1.

Figs. 1(b) and 1(c) show the regions of existence and

stability for DSSN� and DSSNþ for fixed A (see Appendix B

for details). Here we see that these chimeras exist in a bow-

tie shaped region near ðas; anÞ ¼ p
2
; p

2

� �
bounded by the

closed saddle-node (SN) curve. As one crosses this curve

from the interior, DSSN� and DSSNþ approach each other and

ultimately collide and cease to exist. Within this region

DSSNþ is always unstable, but DSSN� is stable in a wedge

shaped region with an <
p
2

that overlaps the region of stability

of SS0. This stable region is bounded by curves corresponding

to saddle-node, Hopf, and transcritical (TC) bifurcations. As

one crosses the Hopf bifurcation (HB), DSSN� becomes unsta-

ble and a stable limit cycle is born that corresponds to a

“breathing chimera,” denoted DSLC. This breathing chimera

subsequently undergoes a homoclinic (HC) bifurcation and

ceases to exist when the limit cycle collides with DSSNþ . The

transcritical bifurcation is discussed in Sec. III D.

Fig. 4 depicts these bifurcation curves for as � an fixed.

The panel with as � an¼ 0 is equivalent to Fig. 4 in Ref. 1.

Here we see that stable chimeras only exist for

�0:16759 � as � an � p
2
. The saddle-node, Hopf, and homo-

clinic bifurcation curves intersect at a Bogdanov–Takens

point (BT1). For as � an< 0, they intersect at a second

Bogdanov–Takens point (BT2). These points merge at

as � an ! �0.16759 and below this point, stable chimeras

FIG. 3. Continua of equilibria for as ¼ p
2
. Panel (a) shows solutions to the

algebraic equations for an ¼ p
2

and varying A (line color); the diagonal is

always a solution corresponding to R. Panel (b) depicts solutions for an¼ 0.

Branches of solutions intersect the surface @C giving rise to chimera states;

for small values of A solutions for an¼ 0 do not intersect C.
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do not exist. For as � an> 0, the Hopf, homoclinic, and tran-

scritical bifurcation curves intersect at the point ðA; asÞ ¼
ð1; p

2
Þ and the transcritical and saddle-node curves also inter-

sect, thus bounding the stability region for DSSN� .

Parameter symmetries Rn, Rs, and R. lead to analogous

chimeras in other corners of phase space. Only DSSN� has a

stable region inside the cylinder C. Near ðas; anÞ ¼
6 p

2
; p

2

� �
; DSSN� corresponds to a familiar in-phase chimera.

However, for ðas; anÞ ¼ 6 p
2
;� p

2

� �
; DSSN� is stable only

when w� p and therefore corresponds to an “anti-phase

chimera.”

2. Other chimeras

In addition to DSSN� and DSSNþ we find other branches

of equilibria corresponding to chimera states, denoted by

DS1
U and DS2

U, first observed for identical phase-lag parame-

ters.47 The branch DS1
U emerges for small A, near SSp with

perturbation expansion

as ¼
p
2
�

ffiffiffi
A
p

a1;

an ¼
p
2
�

ffiffiffi
A
p

a1 þ D1ð Þ;

r1 ¼ 1þ D1 D1 þ a1ð ÞAþO A2ð Þr2 ¼ 1;

w ¼ p� D1

ffiffiffi
A
p
þO A3=2ð Þ;

where D1 and a1 are again free parameters. The branch DS2
U

emerges when for phase-lag difference as � an � p
2

and

phase difference w � p
2

between populations. More precisely,

as ¼ �Aa1;

an ¼
p
2
� A2D2;

r1 ¼ 1þ 2� D2
2

2
� a1D2

	 

A2 þO A2ð Þ;

r2 ¼ 1;

w ¼ �p
2
� a1 þ D2ð ÞA

þ D2

2
2þ D2

2

2
þ a1D2

	 

A2 þO A3ð Þ;

where D2 and a1 are analogous to the free parameters defined

previously (although they occur at different orders with re-

spect to A). Both DS1
U and DS2

U can be continued numerical-

ly and exist for all values of as and an. Nonetheless,

numerical evidence suggests that they are unstable whenever

they correspond to physically relevant solutions (0� r1� 1),

and thus we denote them with the subscript “U.”

It appears that no attracting chimera solutions exist

when ks� kn¼A< 0 (see Fig. 4), i.e., neighbor coupling

dominates the self-coupling, kn> ks; a rigorous proof for this

observation is still missing.

3. Absence of incoherent chimera states

Incoherent chimera states, where one population is

completely desynchronized z1¼ 0 (rather than synchronized)

and z2 6¼ 0; jz2j < 1 only exist for specific parameter values.

FIG. 4. Bifurcation diagrams for varying strength of phase-lag heterogeneity, as� an, allow the comparison with the case of homogeneous phase-lags.1

Chimera attractors reside in the light/dark green shaded regions and are bistable with SS0 (or SSp, for the respective p-chimera). Stable chimeras

(DSSN�; SDSN� ) exist in a wedge shaped region (light green) bounded by three bifurcation curves: a saddle-node bifurcation curve (SN, solid), a Hopf bifurca-

tion curve (HB1, dashed), and a transcritical bifurcation curve (TC, circles). The wedge appears at as� an¼�0.16759 (determined numerically) when two

Bogdanov–Takens points emerge from a single point and disappears again when as � an ¼ p
2
. Breathing chimeras (DSLC, SDLC) exist in a crescent shaped re-

gion (dark green) bounded by a Hopf bifurcation curve (HB1, dashed) and a homoclinic bifurcation curve (HC, dashed-dotted). DD states emerge as the tran-

scritical curve, TC, as one leaves the region of stable chimera states. Stable regions of the uniform states SS0, SSp, and I are indicated by red, blue, and gray

shades, respectively.
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Suppose that z1¼ 0. Stationarity in (2b) implies that

0 ¼ �cn�z2, and thus we have z2¼ 0 unless cn¼ 0.

D. Desynchronized solutions DD

In addition to uniformly synchronous solutions and chi-

meras, there are also attractors where both populations are

partially synchronous or desynchronized, i.e., they satisfy

0< r1< 1 and 0< r2< 1 for all times. We denote such solu-

tions by DD.

1. Equilibria

Branches of DD equilibria can be identified by looking

for stationary solutions to Eq. (3). Solving for r1 6¼61 in

(3a) yields

r1 ¼ �
knr2 cos w� anð Þ

ks cos asð Þ
: (21)

Similarly, we can satisfy Eq. (3b) by letting r2¼ 1 (which,

however, corresponds to a DS chimera), or by letting

w ¼ � 1

2
arccos

k2
s

k2
n

1� cos 2 asð Þ½ � � cos 2anð Þ
 !

(22)

allowing for DD equilibria. Substituting these results into

(3c) and letting _w ¼ 0, one obtains an equation of the form

f ðr2; as; an;AÞ ¼ 0; (23)

which can be solved numerically.

We find that there is a branch DDTC of unstable, non-

physical equilibria, that is, with 0< r1< 1 and r2> 1, that

exists for A¼ 0.7, an¼ 0.44, and as�1:598 (compare also

with Fig. 5). Keeping A fixed and increasing as, DDTC inter-

sects the stable branch DSSN� on S1 [ S2 in a transcritical

(TC) bifurcation where the branches swap stability. For fixed

as� an> 0, this curve passes through the point ðA; asÞ ¼
1; p

2

� �
with coordinates ðr1; r2;wÞ ¼ ð0; 1; as � anÞ (see Figs.

1 and 4). Depending on an and A, the branch DDTC may dis-

appear in a global bifurcation as it and its symmetric image

collide with a continuum of equilibria. More precisely, Figs.

5(b)–5(d) shows how the branch DDTC collides with R as

SS0 and I swap stability for A¼ 0.5 and an¼ 1.2854 at

as¼ 1.666 (see Eq. (17)). The point of intersection is given

by the point on R where the continuum of equilibria loses

transverse stability; cf. Sec. III B.

2. Bifurcations to non-stationary attractors

Alternatively, these branches of equilibria can bifurcate

to other DD attractors that are contained in C. Fig. 5(e) shows

a numerical bifurcation diagram for varying values of as.

Computing trajectories from multiple random initial condi-

tions in C, solutions converge to one of the three types of

attracting states: (i) fully synchronized solutions SS0 for all

values of as; (ii) chimera states, DSLC or SDLC between HC
and HB1 and DSSN� or SDSN� between HB1 and TC; and (iii)

DD attractors are present between TC and as� 1.66 (see

Appendix B for details).

The numerical bifurcation diagram in Fig. 5(e) shows

that the branch of equilibria DDTC undergoes further bifurca-

tions as as is increased. For an¼ 0.44, A¼ 0.7, DDTC loses

stability in a Hopf bifurcation giving a branch DDH of oscil-

latory solutions with periodic order parameters r1(t), r2(t). As

as is further increased, bifurcations give rise to further com-

plicated dynamics (see Fig. 5(e)–5(h)); details will be given

in a forthcoming publication.10 Numerical calculation of

FIG. 5. DD states display a variety of bifurcation scenarios. (a) The bifurcation diagram for A¼ 0.5, an¼ 1.2854 reveals the following transitions, from left to

right: at as� 1.47, a breathing chimera (DSLC) is born in a homoclinic bifurcation (HC) which becomes a stable chimera in a Hopf bifurcation (HB1) at

as� 1.5. At as� 1.63, the branch DDTC penetrates the cylinder surface and swaps stability with the chimera state SDSN� in a transcritical bifurcation (TC)—

panel (b) (as¼ 1.661) shows a trajectory in C initialized close to the surface of C (gray) which passes by the chimera saddle before converging (purple) to the

stable DD equilibrium. At the global bifurcation where SS0 and I swap stability (as� 1.6647), the two symmetrically related DDTC branches coalesce on the

corresponding continuum of equilibria onR (panel (c)). Panel (d) shows a trajectory converging to I after the bifurcation point (an¼ 1.668). (e) Different bifur-

cations happen for A¼ 0.7, an¼ 0.44, after the DD branch gains stability (panel (f), as¼ 1.62) in a transcritical bifurcation (TC); the diagram shows local mini-

ma and maxima of r1(t) (small gray dots) and maximal Lyanpunov exponent (black circles) after a transient time (see Appendix B for details). At as� 1.64,

DDTC loses stability in a Hopf bifurcation (HB2)—(g) shows a stable limit cycle (as¼ 1.65) and further transitions to chaos ensue10 as shown in panel (h),

an¼ 1.658. As in previous figures, fixed points in C are shown as solid dots (stable), empty circle (unstable), and diamonds (saddles), and invariant setsR (line

segments) and SS (circle) are highlighted as black lines. Stability regions for SS0/I are shaded in red/gray in (a) and (e).

094819-8 Martens, Bick, and Panaggio Chaos 26, 094819 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  198.109.220.2 On: Thu, 25 Aug

2016 20:40:54



maximal Lyapunov exponents6 indicates that some DD

attractors are in fact chaotic; see Fig. 5(e). Note that such dy-

namics cannot occur for SD or DS states as they lie on two-

dimensional dynamically invariant subspaces.

IV. DISCUSSION

Heterogeneous phase-lags in populations of

Kuramoto–Sakaguchi phase oscillators are crucial to under-

stand real-world oscillatory systems.72 Our analysis reveals

that the case of identical phase-lags is degenerate: heteroge-

neous phase-lags as 6¼ an lead to bifurcations structures and

stable equilibria not reported in systems with homogeneous

phase-lags. For example, the shape of the triangular wedge

within which stable chimeras exist (seen in Fig. 4) collapses

when as< an. More generally, three different cases are dis-

cernible: (i) When as� an< 0 (panel (a)) the transcritical

curve is absent and instead a secondary Bogdanov–Takens

point (BT2) appears. (ii) In contrast, when as� an¼ 0 (panel

(b)), chimeras exist in a wedge bounded by the Hopf, tran-

scritical, and homoclinic bifurcation curves, which all meet

at the point ðA; asÞ ¼ 1
2
; p

2

� �
. In this case, the transcritical bi-

furcation curve coincides with the boundary of the stable re-

gion for SS0 and as a result, no DD states are observed. (iii)

When as� an> 0 (panels (c)–(f)), the intersection point for

the three bifurcation curves is ðA; asÞ ¼ ð1; p2Þ and the tran-

scritical bifurcation curve is distinct from the bounding curve

for the stable region for SS0 leading to the existence of DD

equilibria with 0< r1(t)< r2(t)< 1.

Furthermore, Eq. (3) with heterogeneous phase lags pos-

sess additional symmetries that allow for stable coexistence

of SSp and anti-phase chimeras (see Fig. 1), i.e., where the

angular order parameters of the two populations are separat-

ed by approximately p. Heterogeneous phase lags also give

rise to a range of attractors where both populations are

desynchronized, 0< r1< r2< 1; indeed such states are absent

for homogeneous phase-lag.32 Stable DD equilibria arise

through a transcritical bifurcation where they exchange sta-

bility with a chimera state on the boundary of the cylinder C
(see also Fig. 5). These undergo further bifurcations yielding

stable DD limit cycles (panel (g)) and, according to our pre-

liminary numerical investigations, chaotic attractors (panel

(h)), thus positively affirming the hypothesis of chaos being

present in the Ott-Antonsen equations.30,43 In contrast to tur-

bulence reported for continuous rings of oscillators,69 the

mean field equations (2) for the continuum limit of two pop-

ulations of sinusoidally coupled phase oscillators (1) are

finite-dimensional. A detailed analysis of the transition to

chaos exceeds the scope of this paper and will be published

elsewhere.10

In contrast to previous studies on oscillator networks with

heterogeneous phase-lag parameters, we consider heteroge-

neous phase-lags that preserve the permutational symmetry of

the populations. Symmetry breaking heterogeneity has been

considered before in a neural context where one population

consists of inhibitory and the other population of excitatory

elements.28 Symmetry breaking heterogeneity is similarly pre-

sent in a model of two populations, one consisting of

“conformists,” which are experiencing positive coupling to all

other oscillators, and the other one consisting of “contrarians,”

that experience negative coupling.18 The effects of symmetry

breaking heterogeneity in terms of phase-lags were also stud-

ied for rings of oscillators where the phase-lag a¼ a(x) is neg-

ative or positive depending on the position on the ring.71

A. Persistence of chimera states

In contrast to a discrete ring of finitely many oscillators,

chimera states in systems of finite populations of oscillators

appear to be a persistent (rather than transient) phenomenon.

Chimera states on discretizations of rings of oscillators with

sinusoidal coupling between oscillators have been reported

to have a finite lifetime that increases like a power law with

system size.70 Recent numerical simulations have indicated

that this lifetime can be extended by considering generalized

coupling where the coupling function has higher nontrivial

harmonics,60 similar to weak chimeras in small networks of

oscillators4,8,49 where one can prove the existence of asymp-

totically stable dynamically invariant sets. By contrast, ex-

tensive computational analysis of chimera states in the finite-

size system Eq. (1) with identical phase-lags and sinusoidal

coupling displays no transient behavior40,41 (Refs. 40 and 41

mainly concern the “Kuramoto model with inertia,” but the

case of zero inertia which amounts to Eq. (1) is also treated.)

These simulations were limited to the case where at least one

population is synchronized, and the question whether such

transient behavior is also present for the variety of DD solu-

tions remains to be explored.10

B. Symmetries

Eq. (1) obey various symmetries that we have investi-

gated in detail. Two symmetries, Rs and Rn, helped in partic-

ular, to simplify our analysis, as they imply that we may

restrict our attention to the parameter region 0< as, an< p.

Applying these symmetry operations to chimeras and the DD

state explains how analogous states emerge in four distinct

corners of parameter space, namely, jasj ¼ p
2
; janj ¼ p

2
, as

shown in Fig. 1(b). We have bistability between stable chi-

meras with w� 0 and the stable equilibrium SS0 near

ðas; anÞ ¼ 6 p
2
; p

2

� �
and, similarly, bistability between stable

chimeras with w� p and SSp near ðas; anÞ ¼ 6 p
2
;� p

2

� �
.

These anti-phase chimeras are unstable with homogeneous

phase-lags, but they have been observed in experiments in-

volving coupled metronomes where they also coexist with a

uniform anti-phase state.33 In other words, stable chimeras

only exist near the points in parameter space where the uni-

formly synchronized states, SS0, SSp, and I are all neutrally

stable. This suggests that these partially synchronized dy-

namics represent a state of compromise between “nearly”

stable equilibria, thus supporting the picture of chimera

states emerging in a competition of fully synchronized

states.33 This compromise is reminiscent of stable or moving

fronts between bistable equilibria in nonlinear partial differ-

ential equations.12 The significance of the four parameter

combinations ðas; asÞ ¼ ð6 p
2
;6 p

2
Þ is made evident further

due to the presence of continua of equilibria, which—

depending on the particular coupling strength—may intersect

the boundary r1¼ 1 (or r2) and give rise to chimera states.
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C. Resonance

We have mentioned that it is possible to interpret the

coupling strength and phase-lag, Krs and ars, as amplitude-

and phase-responses in a forced oscillator system. In this

context, inter- and intra-population coupling terms provide

“forcing.” It is interesting to remark that the parameter val-

ues as ¼ p
2

and an ¼ p
2

are reminiscent of resonance points.

When as � p
2
, oscillators stand in resonance with other oscil-

lators from the same population—similarly, oscillators reso-

nate with the neighboring oscillator population when an � p
2
.

The hypothesis that resonance may play an important role in

generating chimera states was first mentioned in an experi-

mental and theoretical study on chimera states emerging in a

system of coupled mechanical oscillators33 (see also Ref.

49). In the experiment, metronomes served as mechanical

limit-cycle oscillators and the mechanical coupling was me-

diated through a mass-spring-friction system. It was ob-

served that chimera states and partly desynchronized states

(DD) occur when oscillators and the coupling medium are

near resonance. Notably, the parameter region where these

states arise includes the boundary between regions with uni-

formly synchronized states SS0 and SSp—in agreement with

predictions of the Newtonian model describing this system.33

Further analysis and a more detailed exploration of the rela-

tionship between this experiment (and its Newtonian model)

and the model presented here will be discussed in a forth-

coming paper.

D. Outlook and perspectives

We anticipate that further understanding of the dy-

namics of coupled phase oscillators will shed light on the

synchronization properties of real-world oscillatory sys-

tems and exciting questions remain. For instance, what is

the size and the shape of the basins of attraction of chime-

ra states32 and desynchronized states in the presence of

heterogeneous phase-lags and how do they deform as the

parameters are varied? Moreover, while we considered

only the dynamics of two populations of phase oscillators

with heterogeneous phase-lags, our results suggest that the

dynamics are equally rich for systems consisting of more

than two populations. Previous studies30,31,55,68 have con-

sidered only homogeneous phase-lags. How our results

generalize to multiple populations and what novel dynam-

ics are possible is a question that will be addressed in fu-

ture research.
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APPENDIX A: OTT–ANTONSEN REDUCTION

1. Derivation

Let us consider the Kuramoto–Sakaguchi model with

non-local coupling between two populations1,32,38 of N
oscillators,

_h
r
k ¼ xr

k þ
X2

s¼1

Krs

N

XN

l¼1

sin hs
l � hr

k � ars
� �

; (A1)

where hr
k is the phase of the k-th oscillator, k¼ 1,…, N, of

population r¼ 1, 2.

To study the mean field dynamics, we consider the ther-

modynamic limit where N ! 1. This allows for a descrip-

tion of the dynamics in terms of the mean-field order

parameter.43–45 We define two order parameters for each

population r¼ 1, 2,

zrðtÞ ¼
ð1
�1

ð2p

0

eihr

frðxr; hr; tÞdhrdxr; (A2)

where frðxr; hr; tÞ is the probability density of oscillators in

population r, obeying the continuity equation

@fr
@t
þ @

@h
frvrð Þ ¼ 0; (A3)

where vrðxr; hr; tÞ is their velocity, given by

vr ¼ xr þ
X2

s¼1

Krs

ð1
�1

ð2p

0

fsðxs; hs; tÞ

� sinðhs � hr � arsÞdhsdxs;

(A4)

¼ xr þ
X2

s¼1

Krs

2i
zse
�i hrþarsð Þ � �zse

i hrþarsð Þ
� �

: (A5)

Following Ott and Antonsen,43,44 we consider probabili-

ty densities along a manifold given by

fr ¼
gr xrð Þ

2p
1þ

X1
n¼1

ar xr; tð Þeih
� �n þ c:c:

" #
: (A6)

Using this ansatz, we find the dynamics governed by a partial

(integro-)differential equation of the form

0 ¼ @ar

@t
þ ixrar �

1

2

X2

s¼1

Krs eiars�zs � e�iarszsa
2
r

� �
; (A7)

where

zrðtÞ ¼
ð1
�1

�arðxr; tÞgrðxrÞdxr: (A8)

The latter integral solves by choosing a Lorentzian

distribution

gr xrð Þ ¼ Dr=p

xr � Xrð Þ þ D2
r

; (A9)

094819-10 Martens, Bick, and Panaggio Chaos 26, 094819 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  198.109.220.2 On: Thu, 25 Aug

2016 20:40:54



with centers Xr and width (half width at half maximum) Dr.

Then, we have zrðtÞ ¼ �arðXr � iDr; tÞ and evaluating (A7)

and (A8) at the poles xr ¼ Xr � iDr, we obtain

@�zr

@t
¼ � Dr þ iXrð Þ�zr þ

1

2

X2

s¼1

Krs eiars�zs � e�iarszs�z
2
r

� �
;

(A10)

¼ � Dr þ iXrð Þ�zr þ
1

2

X2

s¼1

�crs�zs � crszs�z
2
r

� �
: (A11)

2. The limit of identical frequencies

The Ott–Antonsen (OA) manifold, in which the Fourier

coefficients fn(t) of the probability density f satisfy

fnðtÞ ¼ aðtÞn, is globally attracting for a frequency distribu-

tion with non-zero width D.44,45 For identical oscillators

(Dr¼ 0, X1¼X2), the dynamics for the problem can be de-

scribed by reduced equations using the Watanabe–Strogatz

ansatz,65 as shown in Pikovsky and Rosenblum;51 the

authors showed that Eq. (A1) may also be subject to more

complicated dynamics than those described by the OA

ansatz. Studies by Laing22,23 investigated the dynamics using

the OA ansatz for n¼ 2 populations for the case of non-

identical frequencies and found that the dynamics for suffi-

ciently small D is qualitatively equivalent to the dynamics

obtained for D¼ 0. It is therefore justified to discuss the dy-

namics for D ! 0 representing the case of nearly identical

oscillators using the OA reduction. The limit of identical fre-

quencies means that we let grðxÞ 7! dðxr � XÞ, implying

that zrðtÞ ¼ �arðtÞ, and the governing equations reduce to

@�zr

@t
¼ 1

2

X2

s¼1

�crs�zs � crszs�z
2
r

� �
; (A12)

which are Equations (2a) and (2b).

APPENDIX B: BIFURCATION CURVES AND STABILITY

The bifurcation curves in Fig. 1 were obtained following

an approach similar to the one outlined in Ref. 1. We first

compute the Jacobian J of Eq. (3) at a fixed point. Fixed

points DSSN� and DSSNþ satisfy Eq. (21), r2¼ 1, and _w ¼ 0

in Eq. (3c). The saddle-node bifurcation curve where these

two chimeras coincide can be obtained by solving detðJÞ ¼ 0.

The Hopf bifurcation can be computed in a similar manner by

setting tr(J)¼ 0 with the same fixed points as above. The tran-

scritical bifurcation curve satisfies (23) with r2¼ 1, and r1 and

w given by Eqs. (21) and (22), respectively. These bifurcation

curves were computed via numerical continuation in

MATCONT and verified by inspection of phase portraits cor-

responding to Eq. (3). The stability of chimeras was confirmed

by numerically computing the eigenvalues of the Jacobian and

by numerically integrating Eq. (3).

The bifurcation curves SN, HB, HC, and TC in Fig. 4

were determined by inspection of phase portraits by consid-

ering Eq. (3) on the invariant surface defined by r2¼ 1 while

observing eigenvalues of the full three dimensional system

defined by Eq. (3). Bogdanov–Takens points (BT1, BT2)

were numerically computed by solving fixed point conditions

of Eq. (3) simultaneously with the conditions for saddle-

node (detðJÞ ¼ 0) and Hopf bifurcations (tr(J)¼ 0 and

(det(J)> 0), where J denotes the Jacobian of (3). Similarly,

the intersection point of the SN and TC curves for as> an

were numerically determined by solving the fixed point,

saddle-node, and transcritical conditions; the latter is deter-

mined by observing when one of the eigenvalues of

SDSN� ðDSSN�Þ is zero. The intersection point at ðA; asÞ ¼
ð1; p

2
Þ for as> an was determined by simultaneously solving

the SN and TC conditions.

Fig. 5(a) is computed by numerically continuing the

branches SS0, SD, DD, and I. Fig. 5(e) samples trajectories

of (3) for a given number of random initial conditions (uni-

formly drawn from 0< r1,2< 1, �p<w<p), which con-

verge to either of the following three attracting states: SS0,

SD (or DS), or DD. After a transient time of T¼ 4000, we re-

port temporal local minima and maxima of r1(t) in time,

measured over a time period of T0 ¼ 2000.
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