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Abstract
Chimera states—curious symmetry-broken states in systems of identical coupled oscillators—
typically occur only for certain initial conditions. Herewe analyze their basins of attraction in a simple
system comprised of two populations. Using perturbative analysis and numerical simulationwe
evaluate asymptotic states and associated destinationmaps, and demonstrate that basins form a
complex twisting structure in phase space. Understanding the basins’ precise naturemay help in the
development of controlmethods to switch between chimera patterns, with possible technological and
neural system applications.

1. Introduction

Self-emergent synchronization is a key process in networks of coupled oscillators, and is observed in a
remarkable range of systems, including pendulum clocks, pedestrians on a bridge locking their gait, Josephson
junctions, flashingfireflies, the beating of the heart, circadian clocks in the brain, chemical oscillations,
metabolic oscillations in yeast, life cycles of phytoplankton, and genetic oscillators [1–13]. About a decade ago, a
study [14] revealed the existence of chimera states, inwhich a population of identical coupled oscillators splits up
into twoparts, one synchronous and the other incoherent. This state is counter-intuitive as it appears despite the
oscillators being identical. Recent experiments usingmetronomes, (electro-)chemical oscillators and lasing
systems [15–19] have demonstrated the existence of chimera states in real-world settings; previous theoretical
studies have also confirmed the robustness of chimeras subjected to a range of adverse conditions, including
additive noise, varied oscillator frequencies, varied coupling topologies, and other imperfections [20–30].

Chimeras are known to arise in systemswith non-local coupling that decays with increasing distance
between phase oscillators, thus bridging the gap between the extremes of local (nearest-neighbor) and global
(all-to-all) coupling8. Such long-range coupling is characteristic ofmany real-world technological and biological
[34–36] systems. Inmany systems, chimeras are steady-state solutions stably coexisting with the fully
synchronized state9, not emerging via spontaneous symmetry breaking, and are thus only attained via a certain
class of initial conditions [14, 24, 29]. Figure 1 graphically demonstrates this puzzling aspect of basins of
attraction for chimera states: apparently similar initial conditions (panel (B)) can evolve to completely different
steady-states (panel (C)). Thus, a natural question arising in any practical situation is: given a random initial
phase configuration, how likely is the system to converge to a chimera state? Even though this important
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questionwas raised in 2010 [39], basins of attraction for chimera states have not yet been investigated
systematically.

One difficultywith the examination of basins of attractions is that they are computationally expensive to
obtain, e.g.viaMonte Carlo simulation [40]. Here, in contrast, we use primarily analyticmethods to explain the
structure of the phase space and provide a systematic study of the basins of attraction leading to chimeras in the
thermodynamic limit.

Model.The simplest realization of non-local coupling is achievedwith two populations, where each
population ismore strongly coupled to itself than to the neighboring population (see figure 1 panel (A)). It has
been used as amodel for several investigations of chimera states [15, 26, 27, 41–44]; here chimerasmanifest
themselves as a state with one synchronous and one asynchronous population. Accordingly, we consider the
Kuramoto–Sakaguchimodel with n= 2 populations [41, 42] each of size sN ,

˙ ( ) ( )å åq w q q a= + - -s

s

ss
s

s s

¢=

¢
¢

=

¢
s¢

K

N
sin , 1k

l
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l k
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2

1

where qsk is the phase of the kth oscillator = ¼ sk N1, , in population { }s Î 1, 2 andω is the oscillator
frequency. For consistencywith previous work [41, 42, 45], we assume the coupling is symmetric with neighbor-
coupling n= =ss s s¢ ¢K K and self-coupling m=ssK . Imposingwithout loss of generality m n+ = 1, the
coupling can be parameterized by the coupling disparity m n= -A .We redefine the phase lag parameter via
b p a= -2 as chimeras emerge in the limit of near-cosine-coupling (b  0) for this type of system
[41, 45, 46]. Themeanfield order parameter ( ) ( )q= ås

s sF -
=

s
s

R Ne exp ij
N

j
i 1

1 describes the synchronization level
of populationσwith =sR 1 for perfect and sR 1 for partial synchronization.We consider the
thermodynamic limit  ¥sN , allowing us to express the ensemble dynamics in terms of the continuous
oscillator density ( )q wsf , . This facilitates a low-dimensional description of the dynamics via theOtt–Antonsen
(OA) ansatz [47–49] in terms of themean-field order parameter of each population,

( ) ( )( ) òr q q=s
f q sst f te e , dti i with r< s0 1, see appendices A andB.

By virtue of the translational symmetry f f +s s const., the resulting dynamics are effectively
three-dimensional with the angular phase difference y f f= -1 2, obeying
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Figure 1. (A) Schematic of the systemunder investigation. (B)Three superficially similar oscillator phase distributions taken as initial
conditions. (C)Oscillator phase distributions after long-time evolution of system—each corresponds to the initial condition shown
directly above it. DS: ‘desync-sync’ state; SS0: ‘sync-sync’ state; ‘SD’: ‘sync-desync’ state.
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Phase space is visualized using cylindrical coordinates ( )r y r, ,1 2 , see figure 2. The translation
b b pP +: reverses time in equations (2)–(4), thus inverting flow in phase space and stability offixed

points; we restrict our attention to  b p0 inwhat follows.

2. IMs andfixed points

Analysis of equations (2)–(4) reveals the existence of two invariant surfaces defined by
{( )∣ }r r y r= = Ìs sS D, , 11 2 (the top (blue) and lateral (red) surfaces of the cylinder displayed infigure 2).

The dynamics on thesemanifolds were studied previously [41]: chimera states are born in a saddle-node (SN)
bifurcation and undergo aHopf bifurcation for larger coupling disparity m n= -A . The resulting stable limit
cycle growswithA until eventually it is destroyed in a homoclinic bifurcation. Studying the basins of attraction,
we generalize the previous analysis by considering the entire three-dimensional phase spaceD.

Numerically, we observe that all trajectories with initial conditions r r <, 11 2 are attracted to one of the
invariant surfaces. From there, any of three attractors can be asymptotically approached: (i) a partially
synchronized limit point (stable chimera, either SDorDS), (ii) a limit cycle (breathing chimera, either SD orDS),
or (iii) the fully synchronized state SS0 at ( ) ( )r r y =, , 1, 1, 01 2 . Furthermore, unstable fixed points exist: a fully
synchronized state SSπ at ( ) ( )r r y p=, , 1, 1,1 2 , and several unstable saddle chimeras (UC) (see [28] and
appendixD). The dynamics on S1 and S2 are related due to the invariance of equations (2)–(4) under the
symmetry operation ( ) ( )r r y r r yS -: , , , ,1 2 2 1 .

Outside of S1 and S2, trajectories follow a complexwindingmotion, structured around the two invariant rays
R0 andRπdefined by r r=1 2 with y = 0 and y p= , respectively (see figure 2 and appendix C). Other than
the origin, which is a repeller, there are nofixed points for r r <, 11 2 (see appendixD). Thus, limit cycles in the
interior of the phase space are also absent. In principle, a chaotic attractor could appear insideD but is not
observed.

3.Numerical investigations

First insights regarding basins of attraction for chimera states were gathered via simpleMonte Carlo integration
of uniformly distributed random initial conditions for [ ]r r Î, 0, 11 2 and [ ]y p pÎ - , . These computations
reveal that the probability ( )bp A, of ending up in a chimera state depends primarily onβwith amaximum
value for b  0, see figure 3. This approach provides information about the sizes of the basins of attraction, but
it reveals little about their structure.We therefore ask: how is the three-dimensional phase space structured?

Figure 2. State variables ( )r y r, ,1 2 are interpreted as cylindrical coordinates. Phase space is structured by (i) two invariant rays,R0

andRπ (dashed); and (ii) two invariant surfaces, S1 and S2, forming the side and top surfaces of the cylinder slab. Except for a set of
measure zero, all trajectories converge to one of three locations: SD chimera state on S1(red), DS chimera state on S2 (blue), or fully
synchronized state SS0(yellow). ( ) ( )b =A, 0.1, 0.025 ; filled/empty circles denote stable/unstablefixed points. Small yellow dots
denote initial conditions.
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To better reflect symmetries of the phase space, the dynamicsmay be re-expressed in terms of the sum and
difference of the order parameters (see figure 2), ( )r r= +s 1

2 1 2 with  s0 1, and ( )r r= -d 1

2 1 2 ,

with ( ) ( ) -a s d a s where ( ) ∣ ∣= - -a s s1

2

1

2
(see equations (B.6)–(B.8)).

In order to characterize the structure of the basins of attraction, we compute the destinationmaps for a set of
initial conditions ( )ys d, , . Figure 4(A) shows a typical cross-section of the destinationmapwithfixed s: basins
form a spiraling structure aroundRπ (the ray ( ) ( )y p=d, 0, ), with SD andDS basins always separated by the
(often thin) basin for SS0. The thickness of the basin spiral arms increases away fromRπ, withmaximumnearR0

(the ray ( ) ( )y =d, 0, 0 ).
The area ratio between basins for SD (or, by symmetry, DS) and SS0is related to the probability that a

random initial conditionwill lead to a chimera state, and depends on parametersA andβ as follows. For b  0,
the SS0basin occupies an infinitesimal fraction of the area. Asβ increases, the SS0basin increases its area until it
occupies the entire plane at ( )b b= ASN when the chimera state is annihilated through a SNbifurcation. For

( )b<A ASN or ( )b>A AHC , no chimera state exists and the entire basin belongs to the SS0state.With
increasing >A ASN, the (total) basin area of SS0gradually decreases from100%approaching a constant near
the homoclinic bifurcation, see figure E2.

Figure 3.Probabilities to obtain chimera states via random sampling of initial conditions ( )r r y, ,1 2 . Chimeras appear within the
wedge defined by a saddle-node bifurcation (SN, solid) for smallA and a homoclinic bifurcation (HC, dotted) for largeA[41]. Phase
portraits in the r = 12 plane are shown (insets)with stable nodes (full circles), unstable chimera (white circle) and saddle chimera
(half-filled circles), together with its stable (solid) and unstable (dashed)manifolds. For intermediateA, the asynchronous order
parameter undergoes aHopf bifurcation (HB, dashed). Probabilities for ending up in either SD/DS chimerawere measured by
realizing 1000 random initial conditions ( )r r y, ,1 2 for each parameter value set. Further details are in appendix E.

Figure 4. (A)Destinationmap section in the ( )yd, -planewith = <s s0.56625 c , for SD (red), DS (blue) and SS0(yellow) states.
When s increases, the basin boundaries perform a spiralingmotion as indicated by arrows. (B)The logarithmic times Tlog to
destination reflect the structure of the destinationmap in (A). Times peak at the interface boundaries between SS0and SD/DS regions
(see also figure 5). Parameters are ( ) ( )b =A, 0.1, 0.025 .
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As s increases from zero, basinsmerge and pinch-off in an alternating fashion (see figure 4, section 4 and
supplementary video 1) so that the basin boundaries rotate clockwise aboutR0 (( ) ( )y =d, 0, 0 infigure 4(A)).
Once s reaches » -s A1c , this rotation stops, demonstrating that knowledge of the trajectory position in the
=s sc plane is sufficient for determining its final fate.
The basin density appears singular nearRπ, with a nested structure that allows even tiny perturbations of the

initial condition to strongly influence thefinal state.More generally, the highly alternating basin structure is
reflected in the times to reach steady-state attractors, which are displayed infigure 4(B). Figures 5 andE1 show
destination timesT along a section of thatfigure between the origin and ( ) ( )y p=d, 0, , revealing a power-law
behavior thatmay result from this nested spiral armbasin structure.

Figures 5 and E1 also reveal that destination times diverge on the basin boundaries (see inset), which is
explained by the fact that these boundaries form separatrix sheets: these are the two-dimensional stable
manifolds emanating from the saddle chimeras on S1 and S2, originating in the SNbifurcation that gives birth to

Figure 5.TimesT to reach ò-neighborhood of fixed points SS0/DS/SD; trajectories start from ( ) ( )y y=s d, , 0.566 25, 0, for
 p y p- , b= =A 0.1, 0.025 (straight line on figure 4). Average destination timesT grow like a power law as y p  , thus

basin structure is self-similar around ( ) ( )y p=d, 0, .T diverges at the boundary between SD/DS and SS0basins (inset), since these
trajectories lie on stablemanifolds leading to saddle points on invariantmanifolds S S,1 2.

Figure 6. Separatrix surfaces continued from the SD andDS saddle points on the S1 (red) and S2 (blue)manifolds, respectively, shown
fromdifferent view angles (A)–(D). Continuation is performed as described in the text forA=0.1 and b = 0.025. Black andwhite
dots denote stable and unstablefixed points, respectively.
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chimeras, see figure 2 and [41]. Numerical continuation of those sheets (see figures 6 and E4, and appendix E.7)
displays the same twistingmotion as seen in figure 4.

4. Analysis

A complete analysis of the basins for the entire phase space is difficult to achieve, but themain features of the
basin structure have their origin in the invariant raysR0 andRπ aboutwhich a perturbation analysis can bemade
for smallA andβ (asymptotic results remain qualitatively in fair agreement for parameter values further off the
origin).

4.1. Perturbation analysis around the invariant rayR0

Weconsider the coupling constants ( )m n, to be perturbed from global coupling (A = 0) by setting
μ= (1+A)/2, ν= (1−A)/2 as in [41].We thenmake the perturbative approximation thatψ, d,β andA are all
small and of the same order (while keeping inmind that b>A 2 is required for the existence of a chimera state
in this limit). Thismeans that nearR0, wemake the ansatz [41]:

( )
( )
( )
( )

 
 
 
 






y y

b b

= +
= +
= +
= +

d d

A A

,

,

,

.

1
2

1
2

1
2

1
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Aftermaking a change of variables10 =x d1, y = sψ1/2, and then a second change of variables ( )q=x r cos
and ( )q=y r sin wefind the following equations:
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Note that the derivatives of r and s are both order òwhile the derivative of θ is order 1 (when s is not close to 1).
Thus θ evolves on a fast time scale while r and s evolve slowly.Wemay therefore use themethod of averaging on
the higher order terms involving θ to simplify these equations to

( )b= -
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t
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2
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2
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1

( ) ( )b= -
s

t
s s

d

d

1

2
1 . 102

1

This reveals a couple of properties. First of all, as expected, solutionswill be spirals around theR0manifold.
The radius r goes to 0 as  ¥t (for the truncated equations). Thus, trajectories slowly converge toward
theR0manifold until the approximations break downwhen dθ/dt= 0 and higher order terms
become significant. In other words, theR0-manifold is weakly attracting. The frequency of rotation is

( )w = - -s A
1

2
1 2

1 . So, as  » -s s A1c , the rotation frequency q td d 0. This is here referred to as

the sc-plane. In this plane, the trajectories cease to have a spiral character and instead begin to separate and evolve
toward the fully synchronized state or theDS or SD chimeras.

Note that there is an alternative way that the ‘critical plane’ could be defined. Setting q =td d 0 in
equation (6) yields aminimum s solution ( ) = - +s A1c 1

2 (possible only for particular θ values), thus
» -s A1c is the smallest value of s for which rotation about rayR0may stop. The difference between the two

expressions » - » -s A A1 1 2c and » -s A1c comes fromwhether averaging has been applied or not.
In the former case (averaged equations), rotation aboutR0 stops on average over all θ; in the latter case, rotation
aboutR0 stops only for some particular θ.

By symmetry, if a trajectory originating at ( )ys d, , converges to the SD state, the trajectory originating at
( )y- -s d, , must converge to theDS state. Therefore, the position relative to a separating boundary in the sc
plane determines the final state. Numerical integration confirms that trajectories converging to SD andDS

10
The change of variables is chosen so that that the spiraling cycles become circular in shape.
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chimeras formopposing sides of a positively oriented double helix centered onR0(red and blue infigure 2 and
supplementary video 2).

The ‘rotation’ of the basin boundary as s increases along theR0manifold (indicated symbolically in
figure 4(A)) can also be understood analytically in the perturbative limit close toR0. Equation (10) can be solved
explicitly to get

( ) ( ) ( )= + - b-s t s s s1 e . 11o
t

0
2

0
2 1

Taking ˙ ( )q = - s1 22 to lowest order (from (9)), we can substitute in for s(t) and then integrate from t= 0 to
=t tcrit to approximate the total angle change about theR0manifold over the course of the trajectory.Here tcrit

represents the time at which the trajectory s(t) reaches the critical plane =s sc:
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Integrating q̇ gives a total angle change
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(This can also bewritten as ( )q bD = - s sln c
1

0 , and then this expression is valid for either definition of sc.)
Thus, the boundary angle is proportional to ( ) ( )b b- -- -A sln 1 2 ln1 1 , yielding a rotation rate of ( )b -s 1 as
the section plane s varies uniformly.

Since the angle of a trajectory at the critical plane determines the basin the trajectory belongs to, the
appearance of the basin boundary in a section plane orthogonal to the rayR0 is just a linewith angle proportional
to qD .

4.2. Perturbation analysis around the invariant rayRπ

Wecan perform a similar analysis around theRπ ray by a similar ansatz:
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Againwe find that the derivative of θ is larger than the other derivatives, allowing us to reduce the system to
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Similar to the results nearR0, this analysis reveals a spiralingmotion around theRπmanifold, but here the
radius diverges exponentially. In contrast to the previous case, three distinct time scales are present: the
derivative of θ is an order ofmagnitude larger than the derivative of r and two orders ofmagnitude larger than
the derivative of s. Thismeans that the rotation around theRπmanifold and the radial divergence away from the
manifold occurmore quickly than the translation along themanifold. In otherwords, each trajectory (and

11
The change of variables is chosen so that that the spiraling cycles become circular in shape; the particular shape differs from the one near

theR0-manifold.
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consequently any basin boundary)winds aroundRπwithin a planewith approximately fixed s (see cross section
infigure 4 and supplementary video 3. Rotation around themanifold occurs at a faster rate than divergence
away, and both occur faster than translation along themanifold.

5. Shape of the basin boundaries

Wecan understand two qualitative aspects of the basin boundaries seen in numerics: (1) the basin boundaries
are linear in the sc-plane nearR0, and (2) the basin boundaries have spiral shape nearRπ.

The invariant rayR0 is surrounded by the SS0 basin, and aswemove further away formR0, we enter the SD
andDSbasins, respectively (figures 4, E3 and F1(C)). The boundaries (separatrices) between SS0/SD and SS0/DS
basins are the two stablemanifolds leading to the SD/DS chimera saddles. The relative width of the SS0 and SD/
DSbasins varies with parametersA andβ (figure E2), and the SS0 basin is thin close to the origin, and for
smaller ( )bA, .

To understand the basin shapes nearR0, it is helpful to consider trajectories generated by points along a
straight line orthogonal toR0.Wewill thereby use the asymptotic results(5)–(7) derived in the previous section
valid for smallerA andβ. Consider the set of points along a line segment parameterized by kwith ∣ ∣ k 1where
=r kr0, q q= 0 and =s sc. The trajectories generated by integrating the equationswith initial conditions along

that line segmentwill intersect the plane perpendicular toR0at some later time at d= +s sc where d  . By
symmetry, if a point along the linewith >k 0 evolves toward theDS chimera, then the corresponding point
with <k 0will bemapped to the SD chimera. Similarly, if a point with >k 0 ismapped to the synchronized
state, the corresponding point with <k 0will also bemapped to the synchronized state. Suppose dr0 , so that
all points along the line segment are chosen to be arbitrarily close to theR0manifold. According to
equations (5)–(7), qd is independent of r, so the images of these points in the plane d+sc will remain collinear.
Now ( ) d=rd 2 and d=sd , so not only will the points along this segment remain collinear; as s increases, they
will also remain arbitrarily close to each other and toR0. For at least one particular choice of q0, this line segment
will reach the surface of the cylinder in a direction tangent to the intersection of the invariant surfaces S1 and S2.
As discussed above, this intersection is itself an invariantmanifold (IM), and thus the entire line segmentwill be
mapped to the synchronized state, being the only attractor on themanifold. Thus there exists a line segment in
the sc plane that lies in the basin of attraction for the SS0 state and that separates the basins for SD andDS
chimeras. This suggests that, at least sufficiently close toR0, the basin boundary between SD andDS chimeras
must be linear.

NearRπthe picture is different. Because there are three distinct time scales, with the evolution of both θ and
r faster than the evolution of s, trajectories initially close toRπgenerate spirals within a fixed plane perpendicular
to s—this is the origin of the spiral shape of the basin structure nearRπ.

These qualitative arguments can bemade rigorous in the limit where the SS0basin becomes a set ofmeasure
zero (infinitesimal thickness). The basin boundaries (separatrices) are visualized infigure 6 (also see figure E3 for
a close up of the basins nearR0).

6. Control strategies

Determination of the structure of the basins of attraction for this systemnaturally invites the question of whether
we can ‘control’ the system. This canmean several things, among them: (1) canwe intervene during an initial
transient so as to direct the system to a desired equilibrium; (2) canwe perturb the system tomove it fromone
stable equilibrium to another; (3) canwe stabilize an unstable equilibrium. Each of these questions can also be
examinedwith the goal offinding an ‘optimal’ strategy of some kind, where optimality is usually defined as
minimizing some aspect of the intervention. To answer questions (1) and (2), knowledge of the basin structure
in the thermodynamic limit  ¥N is clearly useful, at least for sufficiently large sN .

A full exploration of control and intervention strategies is beyond the scope of this paper, but as a
demonstration of the power of our approach, we have performed a simple experiment.Wewish to take a system
at equilibrium in theDS chimera state, and to perturb it sufficiently that it goes to a different equilibrium (either
SD or SS0).We restrict ourselves tofinite perturbations of the form ( ) ( )q q + = ¼ s Q k N, 1, ,k k

2 2 , whereQ
quantifies a uniformphase shift to all oscillators in the synchronous group (population 2). Since the
perturbation leaves the system state on the invariantDSmanifold, the final statemay change fromDS to SS0.

In the thermodynamic limit, this is equivalent to holding r1 and r = 12 constant while perturbingψ via
y y - Q. Thuswe expect theminimal required perturbation Qmin to be determined by the size of the
restrictedDS basin of attraction (restricted to the surface r = 12 , the top surface of the cylinder shown in
figure 2).
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Figure 7 shows the expected asymptotic value of Qmin determined fromour study of the basins of attraction
presented here, as well as the Qmin values determined via numerical experiment forfinite values of sN . The
precise threshold varies slightly depending on the initial phases but asymptotes to the value observed in the
continuum limit. This good agreement confirms that (1) our knowledge of the basins of attraction in the
thermodynamic limit can indeed inform control strategies for chimera states, and (2) insight into the finite
system is indeed gained by analysis of the thermodynamic limit.

Our analysis of the thermodynamic limit suggests that switching from the SS0 state to aDS (or SD) chimera
requires a perturbation to r1 (or r2), because r r= = 11 2 is an IM.Hence, while a uniformphase shift

( )( ) ( )q q + Qi i
2 2 will perturbψ, it will not be sufficient to desynchronize one of the two populations. Instead, a

non-uniformphase shift that decreases the value of r1 (or r2) can accomplish the desired switching behavior.
Finally, we note that the control strategy presented here is quite naive. It is likely thatmore ‘optimal’

strategies exist in the sense that the perturbationmagnitudes could be reduced.

7.Discussion

The probability that a random initial condition evolves to a chimera state, while important for real-world
applications, has not been a frequent topic of investigation [17, 25]. Here, we have provided a detailed
mathematical analysis unveiling the basin structure for a very simple systemwith two populations, allowing for
insight into the chimera’s relative rarity. It remains to be seenwhether similar efforts applied to othermodels
such as neuronal or pulse-coupled oscillators (where reductionmethods have become available only very
recently [50, 51])will bear fruit, and howbasin structure in those systemswill compare.

Oscillators on a ringwithfinite-range coupling exhibit chimera states that are (very long) transients with
chaotic dynamics [52]. However, extensive computational analysis of thefinite system(1) displays no such
transient behaviorwhile chaotic behavior is absent [44, 53]; this difference in dynamic behavior (alongwith
others) seems to be related to differing coupling topology [44].Moreover, very small oscillator systemswith

=sN 2, 3, 4 are shown to display asymptotic stability of chimera states [54].
Sampling the immense initial state space associatedwith the case of < ¥sN would be a burdensome task.

Our analysis was facilitated by considering  ¥sN , allowing us to focus on the low-dimensional order
parameter dynamics on theOA-manifold [47].While the higher dimensional dynamics off thismanifold poses a
challenge in its own right [30], the continuum theory allows us to gain useful insight bymapping the discrete to
the continuous order parameter, r»s s

fFs sR e ei i (identity for  ¥sN ). Though bifurcation boundariesmay
blur for very low sN and thefinelyfiligreed basin boundaries nearRπmay break down, general basin structures
will look similar even formoderate sN .

The stablemanifolds of the saddles near SS0divide phase space into simply connected basins of attraction
(see figures 6 and E4 and supplementary video 4). Basins near the fully synchronized (SS0) and chimera (SD/DS)
states are simple in structure and relatively large12, resulting in robustness to perturbations (see alsofigure 7).
The twistingmotion around the invariant rays pR0, , however, yields a complex basin structure whichwe explain

Figure 7.Minimal uniformperturbation of synchronous oscillator phases Qmin needed to escape fromDS chimera state equilibrium.
Dashed line indicates asymptotic value for  ¥sN . Dots indicate results fromnumerical experiments at each fixed sN value.

12
Local basin volumes of chimeras presumably scale like ∣ ∣-x xSD,DS SADDLE , where Îx R3 denotes coordinates of stable (SD/DS) and

unstable (SADDLE) chimera states in the reduced phase space.
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analytically. As one approachesRπ, the basin density diverges, and basins become locally intermingled [55]:
perturbations in that region affect the fate of a trajectory drastically.

Continuum theory allows us to construct initial phase densities leading to chimera states via
( ) ( )⎡⎣ ⎤⎦q r= + å +s

p s
q f

=
¥ - sf t, 1 e c.c.n

n n1

2 1
i (see appendix A). If instead initial phases qk are sampled

uniformly on [ ]p p- , , the probability distribution forRσ is unimodal withmean~ sN1 and variance
~ sN1 . The probability distribution for Fs is invariant and uniform; this observation combinedwith the
intermingled basin structure nearRπexplains why in practice random initial phases can lead to both chimera
and fully synchronized states. Thus, this implies in particular that chimera states, given random initial
conditions, are not always rare occurrences (depending on parameter values, see figure 3).

The results we have presented focus on the case of two populations.While two populations allow formulti-
stability between the fully synchronous state (SS0) and two symmetrically equivalent chimera states (SD andDS),
generalizations of such hierarchical structure to >n 2 populations [45, 56]make accessible larger configuration
spaces of size 2n by variation of the synchronization-desynchronization patterns. Onemaywonder if any of the
structures studied here retains relevance in cases ofmore than two populations [46, 56]. It can be shown that the
invariant hyper-ray corresponding toR0 defined by r r=s and f =s 0 exists for >n 2, and that the flowon
this ray is r  1. This suggests that the phase space is skeletonized similarly and a similar analysismay be
feasible—a task left for a future study.

Biologically, systemswithmultiple coexisting chimera attractors have been proposed to describe ‘metastable
dynamics’ required tomodulate neural activity patterns [57], or to encodememory. Indeed, localized dynamical
states are directly related to function in neural networks [58, 59]; localized synchrony has beenwidely studied in
neural fieldmodels as bump states [51, 60, 61], and are phenomenologically similar to chimera states. It is worth
noting that chimeras occur inmodels of neural activity [62–66].

Implementations of chimera states could likely be achieved inmicro-(opto)-electro-mechanical oscillators
[67, 68]where synchronization patternsmay have technological applications. Conversely, as power grid
network topologies evolve to incorporate growing sources of renewable power, the resulting decentralized,
hierarchical networks [69, 70]may be threatened by chimera states, which could lead to large scale partial
blackouts and unexpected behavior.

The potential for applications—or threats—makes the dynamic re-configuration and switching between
chimera configurations (possiblymodulating functional properties of the underlying oscillator network)
particularly relevant [71]; applications thatmodulate functional properties can only be achieved using detailed
knowledge of the basin structure. As a test of principle, we successfully implemented a simple algorithm tomove
thefinite oscillator systembetween different equilibria, demonstrating that an understanding of the basins of
attraction for the  ¥sN systemhas value.We hope that futureworkwill explore the construction of efficient
control strategies to stabilize or prevent chimera states, with applications acrossmany fields.

Acknowledgments

Research supported by theDynamical Systems InterdisciplinaryNetwork, University of Copenhagen (EAM).
We thankCBick, RMirollo, S Strogatz andOOmel’chenko for valuable conversations and comments, and
anonymous referees for helpful suggestions to improve themanuscript.

AppendixA.Derivation ofOA-reduced equations

Weconsider theKuramoto–Sakaguchimodel with non-local coupling between n populations [41, 42]

˙ ( ) ( )å åq w q q a= + - -s

s

ss
s

s s

¢=

¢
¢

=

¢
s¢

K

N
sin , A.1k

n

l

N

l k
1 1

where qsk is the phase of the kth oscillator = ¼ sk N1, , belonging to population s = ¼ n1, , . To facilitate
comparisonwith previous work [41, 42, 45], we consider the case of symmetric couplingwith =ss s s¢ ¢K K . The
phase lag parameterα tunes between the regimes of pure sine-coupling (a = 0) and pure cosine-coupling
(a p= 2). Inwhat follows, we introduce the re-parameterized phase lag parameter b p a= -2 , since for
this type of system chimeras emerge in the limit of cosine-coupling [41, 45], i.e. b  0.

Tomake further progress, we consider the thermodynamic limit, i.e., the case of  ¥sN oscillators per
population. This allows for a description of the dynamics in terms of themean-field order parameter [47–49].
Equation (A.1) then give rise to the continuity equation
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( ) ( )
q

¶
¶

+
¶
¶

=
s

s sf

t
f v 0, A.2

where ( )qsf t, is the probability density of oscillators in populationσ, and ( )qsv t, is their velocity, given by

( ) ( ) ( )òåq w q q= + ¢ ¢s

s
ss

q s

=
¢

¢ ¢v t K f t, e , d . A.3
n

1

i

Herewe have dropped the superscripts to simplify notation: θmeans qs, and q¢means qs¢. FollowingOtt
andAntonsen [47, 48], we consider probability densities along amanifold given by

( ) [ ( ) ] ( )
⎧⎨⎩

⎫⎬⎭*åq
p p

= + +s
s

q

=

¥

f t a t,
1

2

1

2
e c.c. , A.4

n

n

1

i

where * denotes complex conjugation and ( )sa t is given by

( ) ( ) ( )ò q q=s
q sa t f te , d . A.5i

Defining ( ) ( ) ( )r=s s
fsa t t e ti where rs and fs representmean-field order parameters, the governing equation

can be reduced to the system [28, 41, 45]

˙ ( ) ( )år
r

r f f b=
-

- +s
s

s
ss s s s

¢=
¢ ¢ ¢K

1

2
sin , A.6

n2

1

˙ ( ) ( )åf w
r

r
r f f b= -

+
- +s

s

s s
ss s s s

¢=
¢ ¢ ¢K

1

2
cos . A.7

n2

1

TheOtt/Antonsenmanifold, inwhich the Fourier coefficients fn(t) of the probability density f satisfy
( ) ( )=f t a tn

n, is globally attracting for a frequency distributionwith non-zerowidthΔ [48]. For identical
oscillators (D = 0), the dynamics for the problem (with n = 2 populations) can be described by reduced
equations using theWatanabe/Strogatz ansatz [72], as shown in Pikovsky andRosenblum [30]; the authors
showed that equations (1)may also be subject tomore complicated dynamics than those described by theOtt/
Antonsen ansatz. Studies by Laing [26, 73] investigated the dynamics using theOtt/Antonsen ansatz for n= 2
populations for the case of non-identical frequencies and found that the dynamics for sufficiently smallΔ is
qualitatively equivalent to the dynamics obtained forD = 0. It is therefore justified to discuss the dynamics for
D  0 representing the case of nearly identical oscillators using theOtt/Antonsen reduction.

Appendix B.Governing equations for two populations

We restrict our attention to the case of n= 2 populations. Accordingly, we define the coupling parameters
m= =K K11 22 and n= =K K ;12 21 by rescaling timewe can eliminate one parameter so that m n= +1

without loss of generality. The remaining parameter is redefined via m n= -A , expressing the disparity of
coupling between the two neighboring populations. By virtue of the translational symmetry, f f +s s const.,
the dynamics of the system is effectively three-dimensional.We introduce the angular phase difference
y f f= -1 2 of the order parameter, and the resulting governing equations become

˙ [ ( )] ( )r
r

mr b nr b y=
-

+ -
1

2
sin sin , B.11

1
2

1 2

˙ [ ( )] ( )r
r

mr b nr b y=
-

+ +
1

2
sin sin , B.22

2
2

2 1

˙ [ ( )]

[ ( )] ( )

y
r

r
mr b nr b y

r

r
mr b nr b y

=
+

+ +

-
+

+ -

1

2
cos cos

1

2
cos cos . B.3

2
2

2
2 1

1
2

1
1 2

Where the state variables lie in the domain {( ) ∣ [ ]} r r y r r y p p= Î < Î -D , , 0 , 1, ,1 2
3

1 2 .
To investigate the basins of attraction, it proves useful to express the dynamics in terms of the sums and

difference of the order parameters, i.e., we define

( ) ( )r r= +s
1

2
, B.41 2
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( ) ( )r r= -d
1

2
, B.51 2

andψ as above. These variables belong to the domain defined by [ ]y p pÎ - , , [ ]Îs 0, 1 and [ ]Î -d a a, with
( ) ∣ ∣= - -a s s1

2

1

2
(the back-transformation is r = +s d1 and r = -s d2 , without the factor of 2.). The

governing equations are then expressed as

˙ { [ ( ) ( ) ]

( ) } ( )

m n y b

n b y

= - - + + -

+ - +

s s d s d s

d d s

1

2
1 3 1 cos sin

1 cos sin , B.6

2 2 2 2

2 2

˙ { [ ( ) ( ) ]

( ) } ( )

m n y b

n b y

= - - - - +

- + -

d d d s d s

s d s

1

2
1 3 1 cos sin

1 cos sin , B.7

2 2 2 2

2 2

˙ ( ) { [ ( ) ]
[ ( )] } ( )

y b m n y
n b y

= - - - +
+ + + + -

-d s ds d s

s d s d s

2 cos cos

1 2 sin sin . B.8

2 2 1 2 2

2 4 4 2 2

Equations (B.1)–(B.3) or (B.6)–(B.8), respectively, are invariant under the transformation
( ) ( )r r y r r yS -: , , , ,1 2 2 1 , corresponding to interchanging the two oscillator populations.More generally,

the change of parameters b b pP +: reverses time in the governing equations, thus inverting flow and
stability properties in phase space. This is also valid for themore general case of >n 2 equations,i.e., for
equations (A.6) and (A.7).

AppendixC. Invariantmanifolds (IMs)

Two-dimensional IMs. Letting r  11 in equations (B.1)–(B.3) leaves r1 invariant, i.e. ṙ = 01 . The same holds
true for r2 by symmetry. Thuswefind two two-dimensional invariant surfaces, corresponding to the top and
side surface ofD, defined by

{( ) ∣ } ( )r r r= Y Î =s sS S, , 1 , C.11 2

where s = 1, 2 refers to the SD,DSmanifolds, respectively. The dynamics in onemanifold is identical to the
other via the symmetry operation defined by operatorΣ, seemain text. The dynamics on these IMs is analyzed
in [41].

One-dimensional IMs.Our numerical investigations indicate the presence of an IMat y p= 0, with
r r=1 2. Substituting these values into equations (B.1)–(B.3), we get

˙ ( ) ( )b= -s s s
1

2
sin 1 , C.22

˙ ˙ ( )y= =d 0. C.3

Thefirst equation implies that any initial point on the rays with d= 0 and y p= 0, remains there for all times; if
b p< <0 , the trajectorymoves towards the SS0 attractor according to (C.2). Thus, two invariant rays exist,

defined via

{( ) ∣ } ( )r r r r y f= Y Î = =fR D, , and C.41 2 1 2

with f p= 0, .
Note that another one-dimensional IM S12 is defined as the intersection ÇS S1 2, and any initial point with

s= 1 on S12 will therefore always end up in the SS0 state.

AppendixD. Fixed points

Fixed points onS1,2. Thefixed points in the S1,2 manifolds are the SD,DS chimera states and fully synchronized
SS0 states that are discussed in detail in [41]; note that since S12 is an IM, theremust be another fixed point in
addition to SS0 contained in it, with opposite stability: this source is found at ( ) ( )r r y p=, , 1, 1,1 2 , whichwe
refer to as pSS . Figure 2 illustrates how trajectories nearby are repelled from the rayRπ. On S1,2, stable chimera
states are born through a saddle node bifurcation, and undergo aHopf bifurcation for sufficiently large disparity
valuesA so that r <s 1 is oscillatory; the associated limit cycle is destroyed in a homoclinic bifurcationwith even
largerA.

Chimera states. In addition to the in-phase (r r= = 11 2 and y = 0) and anti-phase (r r= = 11 2 and
y p= ) equilibriumpoints, there are also three equilibriumpoints with r = 12 and r ¹ 11 (and three analogous
fixed points with r = 11 and r ¹ 12 ) [28]. These equilibriumpoints represent chimera states. Numerics suggest
that two of these equilibriumpoints occur near y = 0 and one occurs near y p= . Using an ansatzmotivated
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by these numerical results, wefind that these equilibriumpoints satisfy the following scaling relationships
(where m n= -A and m n+ = 1:

(i) Stable chimera near y = 0 (DS):

( )

( ) ( [ ])

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

b b

r b b
b

b

y b b b

~

~ - + - + - +
-

-

~ + - -

A

A A

A A

,

1 1 1 4 1 4
1 6

1 4
,

2 1 1 4 .

1

1 1
2 2

1
2 1

2

1
2

1
2

1 1
2

(ii) Unstable saddle chimera near y = 0 (UC):

( )

( ) ( ( ))

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

b b

r b b
b

b

y b b b

~

~ - - - + - -
-

-

~ + + -

A

A A

A A

,

1 1 1 4 1 4
1 6

1 4
,

2 1 1 4 .

1

1 1
2 2

1
2 1

2

1
2

1
2

1 1
2

(iii) Unstable chimera near y p= (UC):

( )

( )

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

b b

r b b

y p b b b

~

~ - +

~ - + -

A

A A

A A

,

1 2
2

3
,

2
4

3
2 .

1

1
2

1
2 3

1
4

1 1
3

1

1
2

3
2

5
2

These relationships are useful when trying to solve for the precise fixed point locations numerically and for
approximating their stable and unstablemanifolds in order to deduce the basin boundaries.We note that
chimera states asymptotically approach either SS0or SSπas ( ) ( )b A, 0, 0 .

Origin.The origin is an unstable fixed point, as can be seen by linearizing for small r1 and r2 in
equations (B.1)–(B.3).

Other fixed points.Herewe askwhether there are anyfixed points off the IMs S1,2: i.e., are there any fixed
points with r r Ï S,1 2 1,2 where no population is completely synchronized? Together with equations (B.1)–(B.3),

r r< <0 , 11 2 implies the following conditions:

( ) ( )mr b nr b y= + -0 sin sin , D.11 2

( ) ( )mr b nr b y= + +0 sin sin , D.22 1

( )[ ( )]

( )[ ( )] ( )

r r mr b nr b y

r r mr b nr b y

= + + +

- + + -

0 1 cos cos

1 cos cos . D.3

1 2
2

2 1

2 1
2

1 2

Weknow that b b p + reverses time, sowe canw.l.o.g. restrict our attention to  b p0 .When
b p= 0, , the first two equations are satisfied if y p= 0, . The third equation yields the solutions r r= 2 1 and

( ) ( ) ( )( )

( )
r =

r r+  - - + + - -

-

A A A A

A2

1 4 1 3 3 1

2 1

1
2

1
2

, where only the first branch lies in  r0 11,2 .

For all other cases, let us consider the equations by introducing m n= >K 1and r r r=rel 2 1:

[ ( ) ] ( )y r b r b y= + -K0 cos sin cos sin , D.4rel rel

[ ] ( )r y b b y= + +K0 cos sin cos sin , D.5rel

[ ( ) ]

[( ) ( ) ] ( )

r r r r y b

r r y r r r b

=- + -

+ - + - K

0 2 1 sin sin

1 cos 1 cos . D.6
rel
2

1
3

rel
2

1

rel
2

1 rel
2

rel 1
3
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Wenote now that r > 0rel and b >sin 0 by assumption andwe can eliminate these expressions as follows

( )
( )b y

b
y r
r

=
+ Kcos sin

sin

cos
, D.7rel

rel

( )b y
b

r y= - -K
cos sin

sin
cos . D.8rel

Equating (D.7) and (D.8), it follows that afixed point with r r< <0 , 11 2 and b p< <0 can only exist if

( ) ( )r y r= + +K K0 2 cos , D.9rel
2

rel

which has the solutions

( )
( )r

y y
= -

 - K

K

cos cos
. D.10rel

2 2

However, by assumption, we have >K 1and the solutions are complex. Therefore, even if wefind real values
y r, 1 that satisfy the third fixed point equation (D.6), there will be no real solutions for rrel, and thus also not for
r2. Therefore fixed points in the interior of the domain can be excludedwhen b p¹ n where n is an integer.

Appendix E.Numerical analysis

E.1. Probabilisticmeasure of basins of attraction
In order to obtain an estimate of the sizes of the basins of attraction of the equilibria of (B.1)–(B.3), we selected
1000 random initial points ( )r r y, ,1 2 . equations (B.1)–(B.3)were then integrated for a sweep of parameter
values of  A0.01 0.49 with increments of 0.01 and  b0.005 0.245with increments of 0.005 until a
final state was detected. The contour plot infigure 3 displays the fraction of those trajectories with final states
near a chimera state.

It should be noted that the numerical experiment above assumes that r1, r2, andψ are uniformly
distributed. For systemswith afinite number of oscillators sN in each population, the expected value of the
order parameter value rs is ( ) sN1 . Hence, the probabilities computed using the above scheme should not

be interpreted as the probability that a state with randomly selected initial phases ( )q s
k would evolve toward a

chimera state. Instead, they represent the size of the basins of attraction of the chimera states relative to the size of
the basin of attraction of the fully synchronized state in the continuum limit  ¥sN .

Figure E1.Times to attractor. Parameter values for (A) and (B): b= =A 0.1, 0.025 at r r= = 0.566 251 2 and for (C) and (D):
b= =A 0.1, 0.05 at r r= = 0.51 2 . Final destinations are color coded in red for SD, blue forDS and yellow for SS0 states.
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E.2.Destinationmaps
Simulations for a given initial conditionwere carried out until trajectories to a fully synchronized (limit point,
LP) or a stable (LP) or breathing chimera (limit cycle LC) occurred. The detection of these three types of states
was carried out in two steps, described below. Integration of equations (B.1)–(B.3) or (B.6)–(B.8)were carried
out inMatlabTMusing theode45 solver routine

with event detection (see below) on a high performance computation cluster, with a relative error tolerance
of 10−8. Algorithms below are outlined for ( )r r y, ,1 2 -coordinates; analogous detections for
( )ys d, , -coordinates are carried out by applying the related coordinate transformations. Below, ˙r r» td d1,2 1,2

and ˙y y» td d denote the approximate differential values evaluated by the o.d.e. integrator at discrete time
steps.

E.3. Simple convergence test (event A)
This simple test was used to detect the type of state is asymptotically achieved. Integrationwas stopped by an
event detection algorithm solving for roots of:

• LP detection: [ ]r r y d= + + -v d d d1
2

2
2 2 1 2 : convergence to any LP (in any direction).

• Convergence to LCon S1 : [( ) ]r r d= - + -v 1 d1
2

2
2 , passage through ṙ = 02 (= 1 cycle), positive

direction.

• Convergence to LCon S2 : [( ) ]r r d= - + -v 1 d2
2

1
2 , passage through ṙ = 01 (= 1 cycle), positive

direction.

A convergence tolerance of d ~ -10 6 was chosen.

Figure E2.Destinationmaps for parameter sweeps inA (vertical) andβ (horizontal), respectively. Themaps are shown in the
( )yd, -plane at = = -s s A1c . Parameters where saddle node and homoclinic bifurcations occur are denoted by SN andHC,
respectively.

Figure E3.Destinationmap in the ( )yd, planewith s= 0.1. Red indicates SD chimera, blue indicates DS chimera, yellow indicates SS0
state. Parameters areA= 0.1 and b = 0.025.
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E.4. Estimating time to attractor
The following algorithm is adopted for obtaining estimates for the time to reach the attractor,T, i.e., the
traveling time from initial to end condition.When these times are not of interest, the previous scheme is
preferred due to significant gains in computational speed.

(i) Integration is carried out until [ ]r r y d= + + -v d d d1
2

2
2 2 1 2 crosses a zero (event B, LP detection).

(ii) If the integration fails to detect afixed point, the algorithm enters a loop ofmax. 100 iterations, where:

(a) Integration is carried out to detect = ¼k 1, , 10 events of type event A, limit point and limit cycles).
Periods of limit cycles and event states ( )∣r r y =, , t t1 2 k

are stored.

(b) Test for convergence to limit point or limit cycle: ∣∣( )∣ ( )∣ ∣∣ r r y r r y- <= = +, , , ,t t t t c1 2 1 2k k 1

with  ~ -10c
4

(c)) Exit loopwhen a LP or LC is detected or 100 iterations are carried out.

(iii) If LC or LP is detected, the final state is detected as explained above. Otherwise, failed convergence is stored
as a failed end state.

E.5.Destinationmaps in the sc-plane
Destinationmapswere calculated for b = ¼0.01, , 0.125 at constantA= 0.2 (figure E2(A)) and for

= ¼A 0.08, , 0.41at constant b = 0.05 (figure E2(B)). SN and homoclinic (HC) transitions are indicated.

E.6.Destinationmap for small s
Infigure E3, we display a sample destinationmap computed for small s for the purpose of demonstrating what
the basin structurewould look like if initial phases were chosen froma uniform randomdistribution. If, for
example, =sN 50, the expected initial value of swould be close to 0.1.

Figure E4.Visualization of separatrix surfaces and trajectories. Points along the separatrix corresponding theDS chimera state are
colored blue and points along the separatrix corresponding the SD chimera state are colored red. (A)Continuation of the separatrix
for theDS chimera state. Stablemanifold and corresponding eigenvectors of SADDLE are shown solid (magenta) and dashed (green),
and unstable eigenvector in yellow. Red dots indicate initial points fromwhere the stablemanifold (blue)was continued. (B)
Superposition of the two continued separatrix surfaces. The continuation in (A) and (B) is performed as described in the appendix. (C)
Trajectories along the separatrix surfaces originating fromSDandDS saddles points on the S1 and S2manifolds, respectively. (D)
Trajectories (dotted) along the separatrix surfaces, continued from saddle chimeras. Parameters are b = 0.025 andA= 0.1 (A)–(C) or
A= 0.2 (D).
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E.7.Numerical continuation of the basin boundaries (separatrices)
The stablemanifold of the saddle chimera defines the boundary of the basin of attraction of the corresponding
stable chimera. By approximating thismanifold, we can visualize which regions of the state space will evolve
toward this chimera state, as shown infigure 6 andfigure E4. Themanifold can be approximated as follows:

Step 1:Compute the two stable eigenvectors of the saddle chimera to obtain a local approximation to the
stablemanifold near the saddle chimera. (There are two stable eigenvectors v1 and v2 and one unstable
eigenvector v3 for the saddle chimera located at p. The stable eigenvectors define a plane tangent to the stable
manifold.)

Step 2:Obtain a family of starting points ( )qx0 for continuation bymaking small perturbations off of the
saddle chimera in every directionwithin the stablemanifold. (Define a vector of angles θ and amagnitude ò. The
family of starting points are defined by ( ) [ ( ) ( ) ]q q q= + +x p v vcos sin0 1 2 .)

Infigure 6, we used 23 angles θ between 0 andπwith the vectors v1 and v2 chosen so that all of these
perturbations led to relevant parameter values and a perturbationmagnitude of  = -10 6. Infigure E4, 94
trajectories were used.

Step 3: Integrate backward in time from each point until the trajectories reach x1with a predetermined
distance ∣∣ ∣∣-x x1 0 from the start point, and plot the surface containing these trajectories. (Weusedode45 to
integrate the equations and then interpolated to determinewhen the trajectories had reached the desired length.)

Infigure 6, the predetermined distance was set at 0.01 to obtain a high resolution near themanifolds. In
figure E4, the predetermined distancewas set between 1 and 20 (and no additional refinementwas performed) in
order to reduce data points for quick rendering, and in particular to enhance the visibility of the separatrices
while reducing the total number of points displayed. This way the point families are equidistant in space,
rendering an accurate picture of the separatrix surface in all regions.

Step 4:The endpoints of the trajectories define a curve. Use evenly spaced points along the curve as new
starting points and return to step 3 until enough of the stablemanifold has been computed.

Infigure 6, we used a spacing of 0.01 near the saddle chimera and 0.05 once the trajectories had reached a
distance of 0.2 from the saddle chimera.

While thismethod yields satisfactory results for the problem at hand, wemention thatmore advanced and
accurate continuationmethods are available for the computation of themanifold, for an overview of such
methods see [74].

Appendix F. Alternative coordinate representation

In themain text, we chose to use the parametrizationwith r r,1 2 andψ, because this allows for visualization in a
familiar cylindrical coordinate system, and because these coordinates have natural interpretations in terms of
the distributions of phases in thefinite oscillator system: r1 and r2 indicate the degree of synchrony in each
population, andψ defines themean phase difference between the populations. However, an alternative
coordinate representation is possible that better reflects the symmetries inherent to the system, as is
discussed here.

The equations describing the thermodynamic limit(B.1)–(B.3), before being transformed into polar
coordinates, can be rewritten in terms of two complex amplitudes, ¯ r= =fz ke , 1, 2k k

i k , taking the form

¯ [ ¯ ¯ ] [ ¯ ¯ ] ( )m n¶
¶

= - + -a a a a- -z

t
z z z z z z

2
e e

2
e e F.11 i

1
i

1 1
2 i

2
i

2 1
2

and the corresponding equation for z2 with interchanged indices. This system exhibits a rotational symmetry
according to

( ) ( ) f fz z z z, e , e .1 2 1
i

2
i

This symmetrymotivates a reduced coordinate system

¯ ( )g = Îz z F.21 2

∣ ∣ ∣ ∣ ( )d = - Îz z , F.31
2

2
2

with ∣ ∣ g0 1, and [ ]d Î -1, 1 , fromwhichwe recover the original variables with the intuitivemeaning

∣ ∣ ( ∣ ∣ )

∣ ∣ ( ∣ ∣ )

( )

r d g d

r d g d

y

= = + +

= = + -

= - =

z

z

z z c

1

2
4

1

2
4

arg arg ,

1
2

1
2 2 2

2
2

2
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provided that ∣ ∣z1 and ∣ ∣z2 are non-zero. This system is singular only at = =z z 01 2 and its geometry can be
presented so that the symmetry of exchanging z1 and z2 ismaintained, i.e., the reflection symmetry

¯
d d
g g
-
 .

For this parameterization, the fully synchronized states SS0 and SS p are located at ( ) ( )g d =, 1, 0 and
( ) ( )g d = -, 1, 0 , respectively. The invariant raysR0 andRπ are located on the same straight line given by d = 0
with g =Im 0. The invariant IMs S1 and S2 are the two paraboloids defined via ∣ ∣d g = -1 2. States of interest
are then in the region enclosed by these two paraboloids. Sample trajectories are shown infigure F1.
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