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S1. DERIVATION OF EASTBOUND EFFICIENCY

Recall that the length of a trip is determined by NL (a trip represents the periodic trajectory in which a vehicle
passes through NL lights before stopping and waiting for a time W ) which satisfies the following.

(N − 1/2) ≤ NL (rC − r∆) < N . (S1)

For simplicity, we define M = rC−r∆. We can eliminate N from the above expression by noting that it is the smallest
integer that satisfies

NLM < N ≤ NLM +
1

2

for a positive integer NL. Clearly this is satisfied if N = dNLMe where NL satisfies the equation⌊
NLM +

1

2

⌋
= dNLMe

This equation is periodic in M. This can be verified by noting that we can write M = bMc + {M}. Expanding the
arguments of both sides of the equation and simplifying integer terms, we note that the resulting equation depends
only on the fractional part {M} ⌊

NL{M}+
1

2

⌋
= dNL{M}e (S2)

It is straightforward to show that the solution to this equation is NL = d 1
2{M}e. Suppose NL <

1
2{M} . Then

1

2
≤ NL{M}+

1

2
<

1

2{M}
{M}+

1

2
= 1 =⇒

⌊
NL{M}+

1

2

⌋
= 0 and

0 ≤ NL{M} <
1

2{M}
{M} = 1/2 =⇒ dNL{M}e = 1.

So NL < 1
2{M} does not satisfy equation S2. Now suppose NL = d 1

2{M}e (the smallest integer greater than or equal

to 1
2{M} ). If {M} > 1/2, then NL = 1 satisfies the equation, so the assumption is satisfied. If {M} ≤ 1/2, then

1 =
1

2{M}
{M}+

1

2
≤ NL{M}+

1

2
<

(
1

2{M}
+ 1

)
{M}+

1

2
< 1 + {M} =⇒

⌊
NL{M}+

1

2

⌋
= 1 and

1/2 =

(
1

2{M}

)
{M} ≤ NL{M} <

(
1

2{M}
+ 1

)
{M} < 1

2
+ {M} < 1 =⇒ dNL{M}e = 1.

So, NL = d 1
2{M}e must be the smallest integer solution to Eq. (S2).
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S2. EXPLORATION OF DISCONTINUITIES

In our model, an isolated vehicle always travels an integer number of blocks before stopping. This results in a
discontinuous eastbound efficiency. For rC = r∆, NL is infinite. For r∆ slightly greater than rC , NL drops to 1
and then increases for increasings r∆ (mod 1). NL is always an integer, so it increases in integer increments, and
each jump produces a jump in efficiency. Immediately after the jump, the efficiency reaches a local maximum, before
decreasing again. It can be shown that these peaks in efficiency are located at the following locations:

r∆ − rC =

{
0, 1/2, 3/4, ...

2NL − 1

2NL

}
. (S3)

The first peak r∆ = rC represents a green wave, the ideal case in which all vehicles travelling in a single direction
are able to proceed indefinitely without stopping. The second peak corresponds to timings in which a vehicle leaving
a green light at the instant it turns green arrives at the next light immediately before it turns red. Thus the car
travels two blocks and then stops for an instant at a red light before it turns green. We call this a “red wave” peak
because the absolute minimum efficiency (where cars stop at every red light and wait for the entire red cycle) lies
immediately to the left of this peak. The third peak occurs when the car makes it through the first two lights (arriving
at the second at the instant before it turns red), but then stops at the third and waits the remainder of the red cycle.
Subsequent peaks are analogous.

Between these peaks, the efficiency decays like

E =


NLrC

NLr∆+1 for r∆ < rC

NLrC
NL(r∆−1)+1 for r∆ > rC

reaching minima of

E =
NLrC

NLrC + 1/2

and maxima of

E =
NLrC

NLrC + 1− NL

2(NL−1)

.

This is illustrated in Fig. S1.
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FIG. S1. Peaks of theoretical efficiency. The eastbound efficiency is plotted for rC = 0.34 with ticks marking the local efficiency
maxima.
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S3. COMPUTATION OF BANDWIDTH

In this system, each intersection has a maximum flow rate that is determined by the vehicle speed and the green
time. This flow rate limits the length of a platoon that can clear the light in a single cycle. We refer to this as L0.

L0 = v
TL
2

=
∆xTL
2TC

=
∆x

2rC

Although a platoon of length L0 is able to clear a single light during one cycle, the platoon may be unable to clear
subsequent lights. The theory in the manuscript was derived for a single vehicle, but it is possible to show that there
is a platoon length L (often greater than the length of a single vehicle) for which this theory is valid. In practice, the
platoon length can only take on discrete values due to the fact that a platoon must consist of an integer number of
vehicles. In this analysis, for simplicity, we allow the platoon length to take on any value (this is equivalent to using
a vehicle length of 0). This assumption means that the platoon length used in subsequent calculations can deviate
from the actual platoon length by up to one car length. This deviation is negligible as long as the length of a vehicle
is small relative to the block length.

We define bandwidth B = L
L0

as the fraction of the maximum allowable platoon length that can achieve the
efficiency from theory. This can also be interpreted as the fraction of vehicles departing during the first green cycle
that will be able to achieve the theoretical efficiency. This is simply the standard definition of bandwidth in seconds
normalized by the green time TL/2. Thus a bandwidth of 1 means that a platoon of length L0 is able to achieve the
efficiency of a single vehicle. A bandwidth of 0 means that only the single car can achieve this efficiency, and that no
other vehicles can perform as well.

There are two factors that restrict the bandwidth: the phases of downstream lights upon the arrival of the platoon
and the initial phases of upstream lights.
Downstream bandwidth—To compute the downstream bandwidth, we note that the first vehicle in a platoon arrives
at light n at time nTC . For lights 1, 2, ..., NL − 1, the light is green on arrival and the remaining green time restricts
the bandwidth. The phase of light n upon arrival is nω(TC −∆t) which satisfies

kn2π < nω(TC −∆t) < (kn + 1/2)2π

for integer kn = bn(rC − r∆)c where the leftmost expression represents the phase when the light turns green and the
rightmost expression represents the phase when the light turns red. The remaining green time is(

kn +
1

2

)
TL − n(TC −∆t).

We divide this by the total green time TL/2 for proper normalization. Taking the minimum over the first NL − 1
lights yields the downstream bandwidth

Bdown = 2 min{bn(rC − r∆)c+ 1/2− n(rC − r∆)}NL−1
n=1 .

Note that for rC < r∆ < rC + 1/2, the downstream bandwidth is 1. This is due to the fact that vehicles encounter a
red after traveling a single block. In this region, the upstream lights limit the bandwidth.
Upstream bandwidth—The upstream bandwidth is necessary because L0 may exceed the length of a single block
allowing an upstream light to segment the platoon. Given a platoon of length L0 waiting at light 0, we now determine
which of those vehicles will be able to reach light 0 before it turns red. Upstream lights -1 to −n are green if
n∆t < TL/2 or n < 1

2r∆
. We choose n as the total number of consecutive upstream green lights

n =

⌊
1

2r∆

⌋
.

This limits the length of platoon that can clear light 0 to at most n + 1 blocks. The remaining green time for light
−n further restricts the length of the last fragment. It remains green for time TL

2 − n∆t, so only vehicles within

v
(
TL

2 − n∆t
)

of light −n will be able to advance before it turns red. As a result, the platoon fragment beyond light

−n is limited to the lesser of v
(
TL

2 − n∆t
)

and ∆x. Hence the upstream bandwidth is

Bup =
1

L0
min

(
L0, n∆x+ min

[
∆x, v

(
TL
2
− n∆t

)])
= min

(
1,

⌊
1

2r∆

⌋
2rC + min

[
2rC ,

(
1−

⌊
1

2r∆

⌋
2r∆

)])
.
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Note that for slow vehicles (rC ≥ 1/2) the upstream bandwidth is 1; this occurs because L0 is less than one block
making the phases of upstream lights irrelevant. For very fast cars (rC � 1/2), L0 is large, and the upstream lights
tend to play the dominant role in determining the bandwidth.

Composite bandwidth— The true bandwidth is the minimum of the upstream and downstream bandwidths

B = min (Bdown, Bup) , (S4)

and it is bounded 0 ≤ B ≤ 1. Figure S2 overlays the bandwidth on the plot of the eastbound efficiency. It is clear
that all peaks with the exception of the green wave peak have zero bandwidth.
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FIG. S2. Bandwidth of theoretical efficiency. The blue (dark gray) curve representing the bandwidth as a function of r∆ is
displayed along with the green (light gray) curve representing the eastbound efficiency for (a) rC = 0.7, (b) rC = 0.34, (c)
rC = 0.13, and (d) rC = 0.05.

One shortcoming of this approach is that it does not provide information about how the other vehicles perform
relative to the first car in the platoon. Thus small bandwidth cannot necessarily be equated with poor efficiency or
even large deviation from the theoretical efficiency. It simply indicates that deviations from the theory are possible.
Large bandwidth, on the other hand, indicates that the theory is likely valid even for moderate traffic densities.
Simulations reveal that despite the low bandwidth, timings near secondary peaks still perform well at low densities.

S4. JAMMING THRESHOLD

In our simulations, the cars were randomly placed in the system at according to an initial density ρ. We observed
that, below a critical density ρcrit, the efficiency is independent of density and is accurately predicted by the theory.
Above that density, the efficiency decreases as vehicle density increases. In the theory, we assume vehicles are non-
interacting. In simulations with large numbers of vehicles, this assumption no longer holds. Thus the degradation
of efficiency can be attributed to the increasing frequency of interactions between vehicles. We now compute the
“Jamming threshold”, the critical vehicle density for which vehicle interactions can no longer be ignored.

Vehicles interact when they stop behind other vehicles waiting at red lights. At low densities, this causes vehicles to
form platoons which then behave as a single unit. These interactions cease once a steady state platoon distribution is
reached, and consequently they do not cause significant reductions in efficiency. However, when these platoons exceed
a critical length, either repeated segmentation by red lights or coalescence with other platoons becomes unavoidable.
When these interactions cause vehicles to stop earlier than they would have in isolation, the efficiency decreases.
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The two types of platoon interactions that cause a degradation of efficiency, platoon coalescence and platoon
segmentation, become significant at different densities. So we compute two different thresholds that can explain the
behavior visible in Fig. 5.

Platoon coalescence—The frequency of coalescence depends on the relative speeds of the green wave and the individual
vehicles. When 0 ≤ ∆t < TL

2 and ∆t > TC , cars travel faster than the green wave. As a result, vehicles accumulate
at the front of each string of green lights. After the initial transients decay, these vehicles form platoons that behave
as a unit provided the platoon does not fill up the series of consecutive green lights and is short enough to be able
to make it through a light in a single cycle. Since half of the system is occupied by green lights and there are no
vehicles between red lights at equilibrium, the critical density must be ρcrit = min [1/(2rC), 1/2]. See Fig. S3 for an
illustration of this scenario.

FIG. S3. Platoon distribution near the jamming threshold for rC < r∆. This displays a snapshot from a simulation for r∆ = 1/6
where eastbound cars travel faster than the green wave. The green (light gray) and red (dark gray) vertical bars represent the
traffic lights, and the the blue rectangles represent individual vehicles. This snapshot is taken at the instant before the light
on the far right turns green and the light at the trailing end of the platoon turns red. Note that for this particular value of r∆

the green string consists of n =
⌊

1
2r∆

⌋
= 3 lights. This string is filled with a platoon of vehicles that advances at the green

wave speed. Adding additional vehicles would cause vehicles at the trailing end of the green string to stop prematurely due to
the coalescence at the front of the platoon.

When 0 ≤ ∆t < TL

2 and ∆t ≤ TC , cars travel slower than the green wave. Thus, the front end of the red wave
catches vehicles in the green section at a constant rate. This leaves queues of constant length in the red section which
are then left behind at the trailing end of the red wave. However, if there are too many vehicles in the green section,
then the cars at the front of the green section will be slowed down by the cars left behind by the red wave. This
occurs when the green section is full of cars (density = 1), and the platoons in the red section surpass a critical length
determined by the “catch up rate” (density = 1 − r∆

rC
). See Fig. S4 for an illustration of this scenario. The critical

density is a weighted average of the densities in the green segments and red segments: ρcrit = 1/2 + 1/2 (1− r∆/rC).

FIG. S4. Platoon distribution near the jamming threshold for rC > r∆. This displays a snapshot from a simulation for r∆ = 1/6
where eastbound cars travel slower than the green wave. This snapshot is taken at the instant before the light on the far right
turns green and the light at the trailing end of the long platoon in the green string turns red. Note that for this particular value
of r∆ the green string is filled with vehicles while shorter platoons remain queued at red lights. Adding additional vehicles
would cause the short platoons behind red lights to increase in length thereby causing vehicles at the end of the long platoon
to stop prematurely when coalescence takes place.

For left moving waves (∆t > TL/2) the behavior is more complex and less intuitive. This case is less relevant for
urban networks where rC will typically be small (optimal r∆ are generally close to rC). Nonetheless, replacing r∆

with 1− r∆ in the solution for right-moving waves yields good agreement with simulations.

The predicted thresholds for platoon coalescence are marked by an open square and displayed in panel (a) of Fig.
5 in the main text.

Platoon segmentation— Platoon segmentation is related to the bandwidth. A platoon longer than the bandwidth
will necessarily be segmented as it travels through the system. At the threshold, the system is filled with platoons of
length LP = L0B. These platoons are separated by gaps of length G. Simulations suggest that the variation in G is
small near the threshold, so we assume G is a constant. Under this assumption, the critical density of vehicles in the
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system is

ρcrit =
LP

LP +G
(S5)

In order to determine this density, one additional equation is needed. A platoon of length L0 will be segmented into
NL pieces by downstream lights. Thus the region of length L0 will contain NL platoons and NL−1 gaps. The missing
equation is

NLLP + (NL − 1)G = L0 for NL > 1. (S6)

If NL = 1, this equation is redundant and instead

LP +G = ∆x/r∆ for NL = 1. (S7)

This is due to the fact that there is one platoon per “wavelength” in the green wave. Equations (S5), (S6) and (S7)
can be solved for ρcrit yielding the predictions marked by a solid circle and displayed in panel (a) of Fig. 5 in the main
text. These predictions, which assume a vehicle length of 0, agree with the changes in slope of the efficiency curves
displayed in Fig. 5, which were obtained from simulations with a vehicle length of 1/25th of the block length. Thus,
the discretization of allowable platoon lengths can safely be ignored as long as the vehicle length is small relative to
the block length, and the changes in slope can be attributed to platoon segmentation and coalescence.

S5. SUPPLEMENTAL VIDEOS

Three video clips from simulations are included to demonstrate the platoon dynamics observed. These display
eastbound and westbound traffic on an 8 block segment of the total 50 block long system. Traffic lights are indicated
by red and green vertical lines, and individual vehicles are marked by blue rectangles. In these videos, the vehicles
have a length equal to 1/10th of the length of a block. The videos correspond to rC = 0.34, ρ = 0.25, and three
different values of r∆ corresponding to a non-green-wave optimum (r∆ = 0.15), a green wave (r∆ = 0.34), and a
sub-optimal timing (r∆ = 0.44). The total inflow and outflow for both eastbound and westbound traffic are also
displayed. Due to the short timespan over which these totals are computed, they are highly dependent on the initial
condition and as a result should not be viewed as a reflection of effectiveness of the timing scheme.


